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From: Dang, Thinh H. (Fed)

To:

Subject: Fw: Rene asked for a summary of the IdealSVP attack
Date: Monday, September 13, 2021 1:11:58 PM
Attachments: Neukirch Algebraic number theory.pdf

From: Apon, Daniel C. (Fed) <daniel.apon@nist.gov>

Sent: Monday, September 6, 2021 1:19 PM

To: Kelsey, John M. (Fed) <john.kelsey@nist.gov>; Moody, Dustin (Fed) <dustin.moody@nist.gov>;
Peralta, Rene C. (Fed) <rene.peralta@nist.gov>

Cc: internal-pqc <internal-pgc@nist.gov>; Bassham, Lawrence E. (Fed)
<lawrence.bassham@nist.gov>; Liu, Yi-Kai (Fed) <yi-kai.liu@nist.gov>; Cooper, David A. (Fed)
<david.cooper@nist.gov>

Subject: Re: Rene asked for a summary of the IdealSVP attack

Hi all,

Happy Labor Day! =)
| wanted to send some "light" reading material that's likely relevant to this ongoing discussion
(insofar as it may be "ongoing"..).

This is a PDF copy of a math textbook, which we would all have (paid) access to through the
NIST library in hard-copy, in the magical world where we're all not still remote teleworking
after.. checks notes.. 77+ weeks of being off-campus.

Most assorted math textbooks that you come across are:

1. Very hard to read

2. Not obviously relevant to cryptography per se
This one is noticeably easier to read (though, still quite advanced) and extremely relevant to
this thread of thought about S-unit attacks.
In particular, see Chapter 1-3, with special emphasis on Chapter 1 for the mathematical
foundations of structured lattice cryptography.

If you or someone you know is looking to get a deeper understanding of what the heck's going
on with structured lattice crypto.. engaging in a long-form, self-study through this text will give
you a complete view of the mathematical landscape (and make it much easier to read
structure lattice crypto papers without feeling like you're missing out some important
detail(s))

Cheers,





--Daniel

From: Apon, Daniel C. (Fed) <daniel.apon@nist.gov>

Sent: Thursday, August 26, 2021 10:39 AM

To: Kelsey, John M. (Fed) <john.kelsey@nist.gov>; Moody, Dustin (Fed) <dustin.moody@nist.gov>;
Peralta, Rene C. (Fed) <rene.peralta@nist.gov>

Cc: internal-pgc <internal-pgc@nist.gov>; Bassham, Lawrence E. (Fed)
<lawrence.bassham@nist.gov>; Liu, Yi-Kai (Fed) <yi-kai.liu@nist.gov>; Cooper, David A. (Fed)
<david.cooper@nist.gov>

Subject: Re: Rene asked for a summary of the IdealSVP attack

Yes, this is what Dustin said =)

From: Kelsey, John M. (Fed) <john.kelsey@nist.gov>

Sent: Tuesday, August 24, 2021 11:05 PM

To: Apon, Daniel C. (Fed) <daniel.apon@nist.gov>; Moody, Dustin (Fed) <dustin.moody@nist.gov>;
Peralta, Rene C. (Fed) <rene.peralta@nist.gov>

Cc: internal-pqc <internal-pgc@nist.gov>; Bassham, Lawrence E. (Fed)
<lawrence.bassham@nist.gov>; Liu, Yi-Kai (Fed) <yi-kai.liu@nist.gov>; Cooper, David A. (Fed)
<david.cooper@nist.gov>

Subject: Re: Rene asked for a summary of the IdealSVP attack

Daniel,
Thanks for this summary!

To resolve one weirdness from the presentation and surrounding discussion:

(Apparently Leo says that Alice Silverberg and he were both confused about this
claim, which is also odd, since DJB claimed Alice Silverberg as a co-author on the
work for the sake of the talk..)

I’'m pretty sure he was talking about a different Alice (Alice Pellet-Mary).

--John

From: "Apon, Daniel C. (Fed)" <daniel.apon@nist.gov>

Date: Tuesday, August 24, 2021 at 13:07

To: "Moody, Dustin (Fed)" <dustin.moody@nist.gov>, "Peralta, Rene C. (Fed)"
<rene.peralta@nist.gov>

Cc: internal-pqc <internal-pgc@nist.gov>, "Bassham, Lawrence E. (Fed)"
<lawrence.bassham@nist.gov>, "Liu, Yi-Kai (Fed)" <yi-kai.liu@nist.gov>, "Cooper, David A.
(Fed)" <david.cooper@nist.gov>

Subject: Re: Rene asked for a summary of the IdealSVP attack





Gotcha, thanks

From: Moody, Dustin (Fed) <dustin.moody@nist.gov>

Sent: Tuesday, August 24, 2021 1:06 PM

To: Apon, Daniel C. (Fed) <daniel.apon@nist.gov>; Peralta, Rene C. (Fed) <rene.peralta@nist.gov>
Cc: internal-pqc <internal-pgc@nist.gov>; Bassham, Lawrence E. (Fed)
<lawrence.bassham@nist.gov>; Liu, Yi-Kai (Fed) <yi-kai.liu@nist.gov>; Cooper, David A. (Fed)
<david.cooper@nist.gov>

Subject: Re: Rene asked for a summary of the IdealSVP attack

Daniel,
Thanks for such a great write-up to help us get up to speed.

Small note - the Alice that Leo mentions is not Alice Silverberg. If you look at the bottom of his
email, it is actually Alice Pellet-Mary (co-author of ref. 12 you listed).

Dustin

From: Apon, Daniel C. (Fed) <daniel.apon@nist.gov>

Sent: Tuesday, August 24, 2021 12:56 PM

To: Peralta, Rene C. (Fed) <rene.peralta@nist.gov>

Cc: internal-pqc <internal-pgc@nist.gov>; Bassham, Lawrence E. (Fed)
<lawrence.bassham@nist.gov>; Liu, Yi-Kai (Fed) <yi-kai.liu@nist.gov>; Cooper, David A. (Fed)
<david.cooper@nist.gov>; Moody, Dustin (Fed) <dustin.moody@nist.gov>

Subject: Rene asked for a summary of the IdealSVP attack

Daniel,

For those of us that are unlikely to find a few hours to properly review this,
it would be great if you could give us a summary. Vadim seems to disagree
about the results being directly applicable to PQC candidates. What's up
with that?

Regards, René.

Sure... I'll try to give a brief (lol..) summary of this sub-area, at least so you get a flavor for the
technical matter/issues..





Some Historical Background

This line of work (arguably) began in 2014 with a paper written by Campbell/Groves/Shepherd
from GCHQ (the "U.K.'s NSA") at an ETSI
workshop: https://docbox.etsi.org/workshop/2014/201410_CRYPTO/SO7_Systems_and_Attac
ks/SO7_Groves_Annex.pdf
When | say 'arguably," what | mean is that DJB has argued with that ordering of historical
events, and claimed he came up with the idea first in his blog post

t https://blog.cr.yp.to/20140213-ideal.html (expressing his idea of NTRU Prime's ring for the
first time).
Regardless, if you can also read DJB's contemporary summary in this Google Groups
thread https://groups.google.com/g/cryptanalytic-algorithms/c/GdVfp5Kbdb8, and read the

later 'blog' post by Chris Peikert here: https://web.eecs.umich.edu/~cpeikert/soliloguy.html

Before moving to more modern developments, it's worth pointing out that cryptographic work
using "ideal lattices" was mostly inspired by Craig Gentry's original breakthrough paper in Fully
Homomorphic Encryption at STOC

2009: https://dl.acm.org/doi/pdf/10.1145/1536414.1536440

(Or, you can read Craig Gentry's PhD thesis here: https://crypto.stanford.edu/craig/craig-

thesis.pdf)

At the point of this first breakthrough of a candidate FHE scheme, many people started
exploring cryptography based on ideal lattices (such as the Soliloquy scheme by GCHQ).
While it's worth noting that FHE systems soon moved on be based on different assumptions,
like the Learning With Errors problem; e.g. https://eprint.iacr.org/2011/344.pdf from 2011,
the original scheme by Gentry was essentially broken (by a quantum key-recovery attack)
given the techniques presented in the Campbell/Groves/Shepherd paper and subsequent
work. (To be completely accurate, I'd have to think about whether the complete attack has
been totally worked out against Gentry's original FHE system, but it certainly should work
against a simplified variant of Gentry's original FHE scheme, and it definitely works as-is
against Smart/Vercauteren's 2010 follow-up FHE scheme that tried to speed up Gentry's
original one: https://www.iacr.org/archive/pkc2010/60560424/60560424 .pdf)

It's also worth noting that the polynomial-time quantum step can be done in subexponential
time
(see http://biasse.myweb.usf.edu/papers/subexp_rel.pdf and https://www.cambridge.or

e/journals/Ims-journal-of-computation-and-mathematics/article/subexponential-class-group-

and-unit-group-computation-in-large-degree-number-
fields/4387ACB036E3358143A563F196E386CB) -- something like exp(n(1/2)) or exp(n”(2/3))

classically, which is a significantly faster attack classically than we'd typically expect against





modern lattice cryptosystems.

Also, worth noting that the original Garg/Gentry/Halevi 2013 multilinear map candidate and
its uses in indistinguishability obfuscation can be broken in the same ways..

The Ongoing Line of Work (Key Technical References +
a few semi-relevant asides too)

Let me cite a bunch of the important technical references in this line of work, leading up to

today. The most important ones to glance at (in my opinion) have a (*).

1.

10.

11.

12.

Might as well start at the start.. (Introduction to Cyclotomic Fields, Washington
1997): https://link.springer.com/book/10.1007/978-1-4612-1934-7

. Quantum Unit/Class Group stuff (STOC

2005): http://www.cse.psu.edu/~sjh26/unitgroup.pdf

Quantum Unit/Class Group stuff (ANTS X 2013): https://msp.org/obs/2013/1-1/0bs-v1-
nl-p17-s.pdf

(*) As before, Soliloquy

(2014): https://docbox.etsi.org/workshop/2014/201410_CRYPTO/SQ7_Systems_and_Att
acks/S07_Groves_Annex.pdf

the one most cited-- Quantum Unit Group stuff (STOC

2014): http://personal.psu.edu/kxe8/unitgroup.pdf

a heuristic approach to short-PIP by Biasse Song (which | can't find online-- we'd have to
ask University of Waterloo for a copy if needed): A note on the quantum attacks against
schemes relying on the hardness of finding a short generator of an ideal in Q((2n ).
Technical Report 2015-12, The University of Waterloo, 2015

the full 2016 paper based on the 2015 technical report

above: https://fangsong.info/files/pubs/BS_SODA16.pdf

(*) a rigorous analysis of Biasse-Song's approach (Cramer/Ducas/Peikert/Regev

2016): https://web.eecs.umich.edu/~cpeikert/pubs/logunit.pdf

(*) Short Stickelberger Class Relations (Cramer/Ducas/Wesolowski

2016/2017): https://eprint.iacr.org/2016/885
(**) A very nice, 5-page survey in 2017 by Leo
Ducas: http://www.nieuwarchief.nl/serie5/pdf/naw5-2017-18-3-184.pdf

The case of Multiquadratics (Bauch/Bernstein/de Balence/Lange/van Vredendaal
2017): https://eprint.iacr.org/2017/404

Approx-SVP in Ideal Lattices with Pre-processing (Pellet-Mary/Hanrot/Stehle
2019): https://eprint.iacr.org/2019/215






13. (*) analyzing the shortness of vectors by the Ideal-SVP Quantum Alg --

Ducas/Plancon/Wesolowski (DPW 2019): https://eprint.iacr.org/2019/234
14.

The State-of-the-Art Attack

Prior to DJB's talk, the state of the art was the attack by CDW 2016/2017 (whether we get a lot
more, a little more, or no more from the S-unit idea is an outstanding question, smile).
Let's see if | can describe this at a high-level, without using LaTeX. =)

The attack can be mostly broken down into four steps.
You're given as input an ideal a of a cyclotomic number field.

First, you perform a (quantum) Class-Group Discrete Logarithm.

Namely, you express the class [a] of ideal a in a basis B = {p~sigma | sigma in G} for some
prime ideal p where G is the Galois group of the number field over the rationals.

To do so, you are running the algorithm of BS16 (see bullet-point 7 or 8 above), which is based
on the quantum algorithm for the Hidden Subgroup Problem over R*n from EHKS14 (see
bullet-point 4 above).

The output is an element e of \Z[G] such that [p*e] = [a], where the Galois group ring R =\Z[G]
is just the integer linear combinations of elements of the Galois group g.

Second, you (classically) solve the Close Principal Multiple problem.

You'll need a principal ideal to go to Step 3 next, and a is almost certainly not principal. So, you
search for a principal ideal b = ac such that cis a "small" ideal.

This is basically done as an application of Stickelberger's Theorem (a structural theorem which
is kind of the 'conclusion' of Washington's 1997 textbook on cyclotomic fields).

Assuming a hypothesis about the 'plus-part' of the class group being trivial -- i.e. that so-called
(h_m)*+ =1, which is related to the Generalized Riemann Hypothesis (GRH) -- we obtain a
principal ideal b of subexponentially bounded norm.

Third, you (quantumly) solve the Principal Ideal Problem.

Given b, you find some generator h of it. This is from BS16.

Fourth, you (classically) solve the Short Generator Problem.





This involves finding a unit (a-ha!) u, such that g = uh (which also generates b) has small norm.
In particular, you find a unit u by decoding the log-unit lattice (which is a Closest Vector
Problem type of situation, but where this log-unit lattice is particularly special now, so it's
fast).

Finally, you (hopefully!!) have in your hand a short generator g of the ideal a of the ideal
lattice cryptosystem you were attacking, which is either the secret key of the cryptosystem or
something functionally equivalent, so now Bob's your uncle.

Some Initial Discussion Points

e Haven't we just broken cyclotomic lattice cryptosystems? (Un)fortunately, no.

There are two major obstacles for true cryptanalytic application from the point of view
of CDW17:

o The generator g that you get out from the above attack is only "short" in a very
relative sense. In particular, the norm of g is (highly) expected to be around
~exp(n”?(1/2)) times the length of the shortest vector.

That is, you're not getting the shortest vector or even a close approximation,
you're getting something that's still subexponentially long.

Theoretically-secure LWE-type cryptosystems rely on very small approximation
factors, involving polynomially-long secret key vectors.

Practically-secure NIST candidates rely on even shorter (linearly-long) secret key
vectors.

o Even breaking Ideal-SVP with a very small epsilon-approximation factor is not
enough to break systems based on Ring-LWE, Ring-SIS, Module-LWE, or Module-
SIS.

While it's known that these Ring/Module problems are at least as hard as Ideal-
SVP, the opposite direction is not known.

Ring-LWE, for example, is better phrased (in terms of SVP problems) as actually an
approx-SVP problem on module lattices of rank 2.

"Rank 2 Module-LWE" is, similarly, actually an approx-SVP problem on module
lattices of rank 3. (In general, rank-k Module-LWE is more accurately related to a
rank-(k+1) Approx-ModuleSVP problem for k >= 1, where Ring-LWE isk = 1.)

e How far apart are IdealSVP (the rank-1 "ModuleSVP" case) and rank-2 ModuleSVP? It's
still mostly unclear, but it's been a fundamental, known barrier for a long time.
For recent work along these lines, you can see a CRYPTO 2020





paper https://eprint.iacr.org/2019/1142.pdf

The salient point is that their reduction from higher rank-k only goes down to rank-2
(exactly), and completely falls apart if you try to push to rank-1.

(I remember asking Noah S-D a question about this during his talk on the publication,
and his response as to why they couldn't get to rank-1 or what technigue might help out
was essentially "Pfft, | have no idea.")

e [sitthe case that DJB's new S-unit method resolves the first barrier above for the case
of IdealSVP / rank-1 ModuleSVP? Maybe. He certainly is claiming so. However, it's worth
noting that there seems to be contention on the forum as to whether the claim is in fact
accurate/true or not. For instance, Leo Ducas points out that he doesn't make that
concrete claim until the final slide, and it seems essentially unsupported by some kind of
evidence in the rest of the preceding talk. (Apparently Leo says that Alice Silverberg and
he were both confused about this claim, which is also odd, since DJB claimed Alice
Silverberg as a co-author on the work for the sake of the talk..)

Some of my questions on the pgc-forum were designed to try to nail down the "how
and why" of where this claim came from; I'm hoping Dan responds with some more
information about this..

Alright, that's enough typing for one morning. Hope this is helpful, Rene,
--Daniel
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Foreword

-It isa very sad moment for me to write this "Geleitwort" lo the English
translation-ofJtirgen Neukirch's book on Algebraic Number Theory. It would
have been so much better, if he could -have done this himself.

But it is also very difficult for me to write this "Geteitwort": The book
contains NeU:kirch's Preface to the German edition.There he himself speaks
about his intentions, the content.of the book arrd his personal view of the subject.
What else can be said?

It becomes dear from his Preface that Number Theory was Neukirch's favorite
subjectin mathematics. He was enthusiastic about it, and he was also able to
implant this enthusiasm into the minds of his students.

He attracted them, they gathered around him in Regensburg. He told them
thatthe subject and its beauty justified the-highest effort and so they were always
eager and motivated to discuss and tolearn the newest developments in number
theory and arithmetic algebraic geometry. | remember very well the many
occasions when this equipe showed up in the meetings of the ''Oberwolfach
Arbeitsgemeinschaft" and demonstrated their strength (mathematically and on
the soccer field).

During the meetings of the "Oberwolfach Arbeitsgemeinschaft" people
come together to learn a subject which is not necessarily their own speciality.
Always at the end, when the most difficult talks had to be delivered, the
Regensburg crew took over. In the meantime many members of this team teach
at German universities.

We.find this charismaofli.irgen Neukirch,in the book.It will be a motivating
source for young students to study Algebraic Number Theory, and | am sure
©hat it will attract many of them.

At Neukirch's funeral his daughter-Christiane recited the poem which she
often heard ,from her father: Herr van Ribbeck au/ Ribbeck im Havellandby
Theodor'Fontane. It tells the story of a nobleman who always generously gives
away the pears from his garden to the children. When he dies he -asks fora
pear to be put in his grave, so that later the children can pick the pears from the
growing tree.

This is -1 believe - a good way ofthinking of Neukirch's book: There are
seeds in it for atree to grow from which the "children" can pick fruits in the
time :to come.

G.Harder





Translator's Note

When | first accepted Jurgen Neukiroh's request to translate hisAlgebraische
Zahlentheorie, back in 1991, no-.one imagined thathewould-not live.to seethe
English edition. He did see the raw version of the translation -(I gave him the
last chapters in the Fall of 1996), and he still had time to go carefully through
the first four chapters of it.

The bulk of the text consists of .detailed technical mathematical prose and
was thus straightforward to translate, even though the author's desire to
integrate involved arguments and displayed formulae into comprehensive
sentences could not simply be copied into English. However, JtirgenNeukirch
had peppered his book with more meditative paragraphs which make rather
serious use of the German language. When | started to work on the translation, he
warned me that in every one of these passages, he was not seeking poetic beauty,-
but orily the precisely adequate expression of anidea.lt isfor the reader to judge
whether 1 managed to render his ideas faithfully.

There i,sone neologism that | propose in this translation, with Jiirgen
Neukirch's blessing: | call replete divisor, ideal, etc., what is :usually called
Arakelov divisor, etc. (aterminology that Neukirchhadavoided in the German
edition). Time will deliver its verdict.

lammuch indebted to Frazer Jarvis for goingthroughmy entire manuscript,
thus saving the English language from various infractions. But needless to say,
I alone am responsible for all deficiencies that remain.

After Ji.irgen Neukirch's untimely death early in 1997, -it was Ms Eva-
Maria Strobel whotook it upon herself to finish as best she could what Ji.irgen
Netikirch had to leave undone. She had already applied her infinite care and
patience to the original :German book, and she had assistedJtirgen Neukirch in
proofreading the first fom chapters of the translation. Without'her knowledge,
responsibility, and energy, this bodk would not be what it ;is.1n particular, a
fair number of small corrections and modifications of the German original that
had been accumulated thanks to.attentive readers, were taken .into account for
this English edition. Kay Wingberg graciously helped to chedka-few of them.
We sincerely hope that the book published here would have made its author

happy.

Heartythanks goto RaymondSeroul, Strasbourg, for applying-his wonderful
expertise of TEX to the final preparation of the camera-ready manuscript.





viii Translator's Note

Thanks go to the Springer staff for seeing this project through until it was
finally completed. Among them | wantto thank especially Joachim Heinze for
interfering rarely, but effectively, over the years, with the rea:lization of this
translation.

Strasbourg, March 1999 Norbert Schappacher





Preface to the German Edition

Number Theory, among the mathematical disciplines, occupies an idealized
position, similar to the one that mathematics holds among the sciences. Under
no obligation to serve needs that do not originate within its-elf, it is essentially
autonomous in setting its goals, and thus manages to protect its undisturbed
harmony. The possibility of formulating its basic problems simply, the peculiar
clarity of its statements, the arcane touch in its laws, be they discovered or
undiscovered, merely divined; last but not least, the charm of its particularly
satisfactory ways -of reasoning - all these features have at all times attracted
to number theory a community of dedicated followers.

But different-number theorists may dedicate themselves differently-to-their
science. Some will push thetheoretical development only as far as is necessary
for the concrete result they desire. Others will strive for a more universal,
conceptual clarity, never tiring of searching for the deep-lying reasons behind the
apparent variety ,of arithmetic phenomena. Both attitudes are justified, and they
grow particularly effective through the mutual inspirational influence they exert
on one another. Several beautifui textbooks illustrate the success of the first
attitude, which is oriented towards specific problems. Among them, let us pick
out in particular Number Theory by S.I. sorevicz and J.R. sararevic [J4]: a
book which is extremely rich in content, yet easy to read, and which we
especially recommend to the reader.

The present book was conceived with a different objective in mind. It does
provide the student with an essentially self-contained introduction to the theory
of algebraic number fields, presupposing only basic algebra (it starts with
the equation 2 = 1 + 1). But unlike the textbooks alluded to above, it
progressively emphasizes theoretical aspects that rely on modern concepts. Still,
in doing so, a special effort is made to limit the amount of abstraction used, in
order that the reader should not lose sight of the concrete goals of number theory
proper. The desire to present number theory as much as possible from a unified
theoretical point of view seems imperative today, as a result of the r.evolutionary
development that number theory has undergone in the last decades in conjunction
with ‘arithmetic algebraic geometry’. The immense success that this new
geometric ,perspective has brought about - for instance, in the context of the
Weil conjectures, the Mordell conjecture, of problems related to the conjectures
of Birch and Swinnerton-Dyer - is largely based on the unconditional and
universal application of the conceptual approach.





X Preface .to the German Edition

It i-s true that those impressive :resuhs can hardly be touched upon in this
book because they require higher dimensional theories, whereas the book
deliberately confines itself to the theory of algebraic number fields, Le., to
the 1-dimensional case. But | thought it necessary to present the theory in a
way which takes-these developments into account, taking them as the distant
focus, borrowing emphases and,arguments from the higher point of view, thus
integrating the theory of algebraic number fields ‘into the :higher dimensional
theory - or at least avoiding any obstruction to such an integration. This is
why | preferred, whenever it was feasible, the functorial point of view and the
more far-reaching argument to the devertrick, and made a particular effort to
place geometric interpretation tothefore, in the spirit of the theory of algebraic
curves.

Let me forego the usual habit of describing the content of each individual
chapter in this foreword; simply turning pages will yield the same information
in a more entertaining manner. I would however like to emphasize a few <basic
principles that have guided me while writing the book. The first chapter lays
downthe foundations of the global theory andthe second of thelocal theory of
algebraic number fields. These foundations are finaUy summed up in the -first
three sections of chapter I, the aimof which isto.present the perfect analogy of
the classical notions and resultswith thetheory of algebraic curves andthe idea
of the Riemann-Roch theorem. The presentation is dominated by ".Arakelov's
point of view", which has acquired much importance in recent years. It is
probably the firsttime that this approach, with all itsintricate normalizations,
has received an ex-tensive treatment in a textbook. But I finally decided not
to employ the term "Arakelov divisor" although it is now widely used. This
would have entailed attaching the.name of Arakelov to many other concepts,

introducing too heavy a terminology for this elementary material. My decision
seemed all the more justified as ARakeLov himself introduced his divisors only
for arithmetic surfaces. The corresponding idea in the number field case goes
back to HAssE, and is clearly highlighted for instance in S. LANc's textbook [94].
It was not without hesitation that | decided to include Class Field Theory in
chapters IV-VI. Since my book [107] onthis subject had been published-no.t
long before, another treatment of this theory posed obvious questions. Butin the
end, after long consideration, there was simply no other choice. A sourcebook
on algebraic number fields withoutthe crowning conclusion of class field theory
with its important consequences for the theory of L-series would=have appeared
like a torso, suffering from an unacceptable lack of completeness. This also
gave me the opportunity to modify and emend my earlier treatment, to enrich
that somewhat dry presentation with quite a few examples, to refer ahead with
some remarks, and to add beneficial exercises.

A lotof work went intothe last chapteron zetafunctions and £..:series. These

functions :haYe gained central importance in recent decades, but textbooks do
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not pay sufficient attention tolhem. -Idid not, however, include TATE's approach
to Hecke L-series, which is based on harmonic analysis, althoughjt would have
suited the more conceptual orientation of the book perfectly well. In fact, the
darity of TATE'S own presentation could hardly be improved upon, and it has also
been sufficiently repeated in other places. Instead | have preferred to turn back
to.HECKE's approach, which is not easy to understand in the original version,
but for all its various advantages cried-out for a modern treatment. This having
been done, there was the obvious opportunity of givinga thorough-presentation
of ARTIN's L-series with their functional equation - which surprisingly has not
been undertaken in any exi-sting textbook.

It was a difficult decision to exclude lwasawa Theory, a relatively recent
theory totally germane to algebraic number fields, the subject of this book.Since
it mirrors important geometric properties .of algebraic curves, 'it would have
been a par.ticularly beautiful vindication of our oft-repeated thesis .that number
theory ,is geometry. Ldo believe, however, thatin this case the geometric aspect
becomes truly convincing only if on-euses etale cohomology - which can
neither-be assumed nor reasonably .developed here. Perhaps the dissatisfaction
with this exclusion will be strong enough to bring about a sequel tothe present
volume, devoted to the cohomology of algebraic number fields.

,from the very starNhe book was.not just intended as-a modern sourcebook
on algebraic number theory, but also as a convenient textbook for a course.
This intention was increasingly jeopardized by the unexpected growth of the
material which had to be covered in view of the intrinsic necessities of the theory.
Yet | think that the bookhas.not lost that character. In fact, it has passed a first
test inthis respect. With a bit of careful planning, the basic content of the first
three .chapters can easily be presented in one academic year (if :possible including
infinite Galois theory). The following term will then provide scarce, yet
sufficient room for the class field theory ofchapters IV-VI.

Sections 11-14 of chapter | may most]y be dropped from an introductory
.course. Although the results of section 12 on orders are irrelevant for the
sequel, Iconsiderits insertion in the bookparticularly important. For onething,
orders -constitute the rings of multipliers.., which play an eminent role in many
diophantine problems. But most importantly, they represent the analogues of
singular algebraic curves.. As cohomology theory becomes .increasingly
important for algebraic number fields, and since this is even more true of
algebraic K-theory, which cannot be constructed without singular schemes,
-thetime has come to give orders- an adequate treatment.

In chapter 11, the special treatment of henselian fields in s.ection 6 may be

restricted to complete valued fields, and thus joined with section 4. ff pressed
for time,.section 10 on higher ramification may be omitted completely.
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The firsnhree sections of chapter 111 should be presented inthe lectures since
they highlight a new approach to classical results of algebraic number theory.
The subsequent theory concerning the theorem of Grothendieck-Riemann-
Roch is a nice subject for a student seminar rather than for an -introductory
course.

Final!:), in presenting class field theory, it saV'es considerable time if the
students are already familiar with profi-nite groups and infinite Galois theory.
Sections 4_:_7 ofchapter V, on formal groups, Lubin-Tate theory and the theory
of higher ramification maybe omitted. Cutting out even more, chapter V, 3, on
the Hilbert symbol, and VI, 7 and 8, still leaves a fully-fledged theory, which
is however unsatisfactory because it remains in the abstract realm, and is never
linked to classical problems.

A word on the exercises at the end of the sections. Some .of them are not so
much exercises, but additionalremarks which did not fit well into the main text.
The reader is encouraged to prove his versati'lity in looking up the literature.
I should also point out that I have not actually done all the exercises myself,
so that there might be occasional mistakes in the way they are posed. If such a
case arises, it is for the reader to find the correct formulation. May the reader's
reaction to such a possible slip of the author be mitigated by Goethe's distich:

"Irttum verlaHt uns nie, doch ziehet ein hoher Bediirfnis
Immerden streberrden Geist leise zur Wahrheit hinan." *

During the writing of this book I have been helped in many ways. | thank
the Springer Verlag for considering my wishes with generosity. My students /.
KAusz,B. KocK, P. KoiczE, TH. MosER, M.SnEsshavecritically examined larger
or smaller parts, which led to numerous improvements and made it possible to
avoid mistakes and ambiguities. To my friends W.-D.GEYER, G. TAMME, and K.
WINGBERG | owe much valuable advice :from which the book has profited, and
itwas C. DENINGER and U.JANNSEN who suggested that | give a new treatment
ofHecke's theory of theta series and L-series. | owe a great debt of gratitude
to Mrs. EVA-MAR!A. sTrRoBEL. She drew the .pictures and helped me with the
proofreading and the formatting of the text, never tiring of going into the minutest
detail. Let me heartily thank ail those who assisted me, and also those who are not
named here. Tremendous thanks are due to Mrs. MARTINA HERTL who
didthetypesetting of the manuscript in TpC Thatthe book can appear-is

*Error is ever with us. Yet some angelic need
Gently coaxes our striving mind upwards, towards truth.
(Translation suggested by BARRY MAZUR.)





Preface to the German Edition Xl

essentially due to her competence, to the unfailing and kind willingness with
which she worked through the long handwritten manuscript, and through the
many modifications, additions, and corrections, always prepared to give her
best.

Regensburg, February 1992 Jiirgen Neukirch
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Chapter I
Algebraic Integers

8 1. The Gaussian Integers

The equations
2=1+1,5=1+4,13=4 +9, 17=1+16,29=4+25,37=1+36

show the first prime numbers that can be represented as a sum of two squares.
Except for 2, they are all = 1 mod 4, and it is true in general that any odd
prime number of the form p = a? + b? satisfies p = | mod 4, because
perfect squares are = 0 or = | mod 4. This is obvious. What is not obvious

is the remarkable fact that the converse also holds:

(1.1) Theorem. For aJJprime numbers p # 2, one has:
p=a’+b? "@@abeZ) {=> p=1mod 4

The natural explanation of this arithmetic law concerning the ring Z of
rational integers is found in the larger domain of the gaussian integers

Z[i]l={a+bi.ja,bEZ}, i=€@-
I rihis ring, the equation p = x? + y? turns into the product decomposition
p = (X +iy)(x - iy),

so that the problem is now when and how a prime number p E Z factors
in Z[i]. The answer to this question is based on the following result about
unique factorization in Z[i].

(1.2) Proposition. Thering Z[i] is euclidean, therefore in particular facto-
rial.

Proof: We show that Z[i] is euclidean with respect to the funciion Z[i] -+

f.J U {0}, a r+ lal? So, for a,/3 E Z[i], 3 =J 0, one has to verify the
existence of gaussian integers y,p such that

a= yf3+p and IPI?P< 1/31%
It clearly suffices to find y e Z[i] such that /j =yl < 1. Now, the
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gaussian integers form a lattice in the complex plane (C (the points with
integer coordinates with respect to the basis 1, i). The complex number _]

lies in some mesh of the lattice and its distance from the nearest lattice point
is not .greater than half the length of the diagonal of the mesh, i,e. 1-v12.

Therefore there exists an element y E Z[iJ with J.@ - yj 1 %J2< 1. O

Based on this result about the ring Z[i], theorem (LI) now follows like
this: it is sufficient to show that a prime number p = 1 mod 4 of Z does
not remain a prime element in the ring Z{i). Indeed, if this is proved, then
there exists a decomposition

p=a-f3

into two non-units a, 3 of Z[i]. The norm of z = x +iy is defined by
N(x Fiy) = (x Tiy)(x -iy) =x* +y2,
i.e.,, by N(z) = 1zl2. It is multiplicative, so that one has
p?Z = N(a) - N(/3).
Since a and f3 are not units, it follows that N(a), N({J) ¥ 1 (see exercise 1),
and therefore p = N(a) = a2 + b? where we put a = a + bi.

Finally, in order to prove that a rational prime of the form p = 1+4n
.cannot be a prime element in Z[i], we note thatthe congruence

2

-1 = x“mod p

admits a solution, namely x = (2n)!. Indeed, since -1 = (p - 1)! mod p
by Wilson's theorem, one has

1= - nr=iLe2eee@nIIP- DP-2) 0 - 2]
= [@m 1 1¢-Lyn@n) 1] = [ (2n)!12 mod p.

Thus we have p e+ 1= (x +i)(x - 1).But since | +; (/. Z[i), p does

not divide any of the factors x+i, x-i, and is therefore not a prime element
in the factorial ring Z[i].

The example of the equation p — x2+y2 shows that even quite elementary
questions about rational integers may lead to the consideration of higher
domains of integers. But it was not so much for this equation that we .have
introduced the ring Z[i], but rather in order to preface the general theory
of algebraic integers with a .concrete example. For the same reason we will
now look at this ring a bit more closely.
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When developing the theory of divisibility for a ring, two basic problems
are most prominent: on the one hand, to detemiine the units of the ring in
question, on the other, its prime elements. The answer to the first question
in the present case is particularly easy. A number a = a +bi E Z[i] is a
unit if.and only if its norm is 1:

N(a) :=(a+ ib)(a -ib) =a2 + b2 = |

(exercise 1), i.e., if either a> = 1, b> = 0, ora® = 0, b> = 1. We thus obtain
the

(1.3) Proposition. The group of units of the ring Z[i] consists oftb-e fourth
roots of unity,

zZlir =41, -1, i, -i}.

In order to answer the question for primes, i.e., irreducible elements of the
ring Z[i], we first recall that two elements a, 3- in a ring are called
associated, symbolically a ~ f3,if they differ only by a unit factor, and
that every element associated to an irreducible element st is also irreducible.
Using theorem (1.1) we obtain the following precise list of all prime numbers
of Z[i].

(1.4) Theor-em. The prime elements n of Z[i], up to associated elements,
are given as faJJows.

@ m=1+i,
(2) r=a+ bi witha®?+b®>=p, p=1mod4, a> Ibl >0,
3) m=p, p = 3mod 4.

Here, p denotes aprimenumberof Z.

Proof: Numbers asin (I) or(2) are prime because a decomposition rr = a. 3
in Z[i] implies an equation

P =N(n) = N(a) « N(f3),

with some prime number p. Hence either N(@) = 1 or N(/3) = L, so that
either a ot f3is a unit.

Numbers rr = p, where p = 3 mod 4, are prime in Z[i], because
a decomposition p = a + f3 into non-units a, f3 would imply that p?> =
N (a) « N(,B), so.that p = N{a) = N (a +bi) = a2+ b2 which according
to (LI) would yield p = | mod 4.
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This being said, we have to check that an arbitrary prime element 7
of Z[i] is associated to one of those listed. First of all, the decomposition

N(rr) =n -if = Pl ---Pr,

with rational primes Pi, shows that -ir IP for some .p = Pi. This gives
N(n)IN(p) — p? sothat either N(rr) = p or N(r) = p2 In the case
N(rr) = p we get rr = a+ bi with a> +b? = p, so rr is of type (2) or,
if p = 2, it is associated to | +i. On the other hand, if N(r) = p?
then rr is associated to p since p/m is an -integer with norm one and
thus a unit. Moreover, p = 3 mod 4 has to hold in this case because otherwise

we would have p = 2 or p = | mod 4 and because of (1.1)p = a2 +
b2 = (a + bi}(a - bi) could not be prime. This completes the
00 D

The proposition also settles completely the question of how prime num-
bers p e Z decompose in Z[i]. The prime 2 = (1 +i)(l -i) is associated to
the square of the prime element 1+i. Indeed, the identity 1- i = -i{l+i)

shaws that 2 ~ (1 + i)2. The prime numbers p = 1 mod 4 split into two
conjugate -prime factors
p = (a +b-i)(a -bi),

and the .prime numbers p — 3 mod 4 remain prime in Z[ i.

The gaussian :integers play the ,same role in the field
Q(i) =fa+bi | ab eilJ}

as the rational integers do in the field Q. So they should be viewed as the
"integers" in <Q(i). This notion of=integrality is relative to the coordinates of
the basis 1, i. However, we also have the following characterization of the
gaussian integers, which is independent of a choice of basis.

(1.5) Proposition. Z[i] consists precisely of those elements of the extension
field Q(i) ofQ which satisfya manic polynomial equation
x?+ax +b =0

with coeflicients a, b E Z.

Proof: An element a = ¢ +id E Q(i) is a zer-oof the polynomial
x*+ax +bE (Q[x] with a= -2c, h=c2+d2.
If c and d are rational integers, then so are a and b. Conversely, ifa and b

are integers, then so are 2c and 2d. From (2c¢)2+ (2d)2 =4b = 0 mod 4 it
follows that (2c)2 = (2d)> = 0 mod 4, since square-s are always —0 or = I.

Hence c and d are integers. O
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The last proposition leads us to the general notion of an algebraic integer
as being an eiement satisfying a monic polynomial equation with rational
integer coefficients. For the domain of the gaussian integers we have obtained
in this section a complete answer to the question of the units, the question
-of prime elements, and to the question -of unique -factorization.

These questions indicate already the fundamental problems in the general
theory -of algebraic integers. But the answers we found in the special
case Z.[i] are not typical. Novel .features will present themselves instead.

Exercise-1.a E Z[i] isaunitifandonly ifN(@) = I.
Exercise 2. Show 'lhat, in the ring Z [iJ, the relation a{d = t:y", for a,fJ relatively
prime numbers and e a unit, impliesa= e and .{J= t"17n, with t', e .units.
Exercise -3. Show that the integer solutions of .the equation

w2 +i-=2»

such thatx, y,z ><Oand (x,y,Z) = J ("pythagorean triples") are all given, up to
possible permutation of x and y, by the formula:

x = u?- V2 y=2uv, z=u’+V
where u,vE Z, u >v >.0,(u v) =1, u v not both odd.
Hint: Use exercise 2 to show that necessarily x +iy = ea? with a unit £ and with
a= u+iv E ZJil].
Exercise 4. Show that 'he ring-z[i] cannot be ordered.

Exercise 5. Show that the only units of .the ring Z[€] = Z+ Z/=d., for any
rational integerd > 1, are * |.

Exercise 6. Show that the ring Z[Jd] = z+zJd, for any squarefree rational
integer d > L, has infinitely many :units.

Exercise 7. Show that the ring"Z'.,[-v'2] = Z + Z-v'2 is euclidean. Show furthermore
that its units ,are given :by +( | + J2)", n E Z, and detennine its prime -elements.

§2. Integrality

An algebraic number field is a finite field extension K of QI. The ele- ments
of K are called algebraic numbers. An algebraic number is called integral, or
an algebraic integer, if it is a zero of a monic polynomial f(x) E ;;z,[x].
This notion -of integrality applies not only Jo algebraic num- bers., but occurs
in many different contexts and therefore has to be treated in full generality.
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In what follows, -rings are always understood to be commutative rings
with .1.

(2.1) Definition. Let A - B be an extension .of rings. An elementb E B is
called integral over A, if it satisfies a monic equation

xn-+aixn-l+-:--+an-=0, n::1,
with coefflcients-a; EA. The ring B is called integral over A ifall elements
b E B are integral over A.

Itis desirable, but strangely enough not immediately obvious, that the sum
and the product of two elements which are integral over A are again integral.
This wjlJ be a consequence of the following abstract reinterpretation of the
notion of integrality.

{2.2) Proposition. Finitely many elements bs, .. , bn £ B are all integral over
A if and only ifthe ring A[b1, ... , bn] viewed as an A-module is finitely
generated.

To prove this we make use ofthe following result of linear algebra.

(2.3) Proposition (Row-Column Expansion). Let A= (a;_,;bean(r xr)-
matrix with entries in an arbitrary ring, and let A* = (a;,) be the adjoint
matrix, i.e., a0= (-Di+J det(A;j), where the matrix AiJ is obtained from A
by deleting the i -'th column and the j-th row. Then one has

AA*= A* A= det(A)E,

where E denotes the unit matrix of rank r. For any vector x = (X, ... , xn),
this yields the implication

Ax= 0 ===} (det A)x = 0.

Proof of proposition (2.2): LeLb E B be integral over A and f(x) E A[xJ

a monic polynomial of degree n :::: |1 such that f(b) = 0. For an arbitrary
polynomial g(x) E A[x] we may then write

g(x) = q)f () F r(x),
with q(x), r(x) E A[x] and deg(r(x)) < n_, so that one has
g(b) =r(b) = ao +aib+--- +a,, rbn-I.
Thus A_[b] is generated as A-module=b y I b, ... ,hn-l.
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More generally, if b1, ..., bn E B are integral over A, then the fact that
Afb1, ... , bn] is of :finite type over A follows by induction on n. Indeed,

since bi1is integral over R = A[b1, ... , b11_1], what we have just shown
implies that R[b11] = A[b1, ... , b11] is finitely generated overR, hence also
over A, if we assume, by induction, that R -is an A-module of finite type.

Conversely, assume that the A-module A[b1, ... , bn] is finitely generated
and that w.1,...., wr is a system .of generators. Then, :for any element
b E A[bL, ... , bia one finds that

;
bwi = LGi)'Wj, i=1,..,r, aj EA.
1=l
From (2.3) we s.ee that det{bE - (aij))wi =0,i=1, ..., r (here Eis the
unit matrix of rank r), and since | can:be written 1 = c,w1 +--- +crwr, the
identity det(bE -(aij)) = 0 gives usa monic equation for b with coefficients
in A. This shows that b is indeed integral over A. O

According to this proposition, if b1, ... ,b11E B are integral over A, then-
so is any element b of A[bg, ... , by because A[hl, ... ,.by b] = Afby, ...
, b11J is a finitely generated A-module. In particular, given two
int.egralelements by, b, E B, then by + b, and bb, are also integra] over A.
At the same time -we obtain the

(2.4:) Proposition. Let A ¢ B -€ .C be-two ring extensions. JfC is integral
over Band B -isintegral over A,otbenC-is integral over A.

Proof: Take c EC, and let c**+ byc* !+ ¢+ * + b11= 0 be an equation with
coefficients in B. Write R = A[b1, ... ,bnl Then R[c] is a finitely generated
R-module. If B is integral over A, then R[c] is even finitely generated
over A. since R is finitely generated over A. Thus c is integral over A. O

From what we have proven, the set of-all elements

A={beBI b integral over A}

in a rin_g extension A @ B fonns a ring. It is called the integral closure
of Ain B. Ais said to be integrally -closed in B if A = A. Itis immediate

from (2.4) thatthe integr.al closure A i:s itself integrally closed in B. If | isan
integral domain with field of fractions K, then the integral closure A of A
in K is called the normalization of A, and Ais simply called integrally
closed if A = A. For instance, every factorial ring is integrally dosed.
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In fact, if a/ b E K (a,b E A) is integral over A, i.e.,
(a/b)"*+a1 (a/h)"-t+---+an =0,
with ai E A, then
a" +aba"" + o Fah" =0.

Therefore each prime element n which divides b also divides a. Assuming
a/b to be reduced, this implies a/b E A.

We now tum to a more specialized situation. Let A be an integral domain
which is integrally closed, K its field of fractions, LI K a finite field
.extension, and B the integral closure of A in L According to (2.4), B is
automatically integrally dosed. Each element f3 £ L is of the form

b
f3:a—, bEB,aEA,
because if

anfr +---+afd+ao=0, cie A, an-=0,
then h = an f3 -is integral over A, an integral equation
(anf3t +--- +a;(an/3) +ab=0, .a; E A,

being obtained from the equation for 3 by multiplication by al-*. Further-
more, the 'fact-that A is integrally closed has the effect that an element f3 E L
isinte_gral-over A if and only if its minimal polynomial p(x) takes its coef-
ficients in A. In fact, let f3 be a.zero of the monic polynomial g(x) E A[X].
Then p(x) divides g(x) in K[x], so that all zeroes /h, ..., f3n of p(x)
are integral over A, hence 1lre same holds for all the coefficients, I other
words p(X)E A[x}.

The trace and the norm in the field extension LIK furnish important tools
for the Study of the integral elements in L. We recall the

(.2.5) "Definition. The trace and norm of an element x E L are defined to be
the trace and determinant, respectively,,of the endomorphism

T,:L - L, T o) ==xua,
,Of the K -vector space L:

Trp ik (x) = T(Ty), Npg(x) =det(Ty).
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In the characteristic polynomial
fx-(t) = det(tid--Tx) = tn - a,itn-1 +.... + (-ltan E K]{t]
of Tx, n = [L .:.K], we recognize the trace and the norm as
ar = TrL1IK(X) and a.,,= NL1K(X).
Since T-x+y = Tx +Ty and Txy = Tx o Ty, we obtain.nomomorphisms
TrL\K (L € K and NLIK : L* € K*

In the case where the extension LIK is separable, the trace and norm admit
the following Galois-theoretic interpretation.

(2.6) -Proposition. If L IK is a separable .extension and a : L » K varies

over the different K "embeddings ofL into an algebraic closure K ofK, then
we.have

(i) fxt) = NU - ax),
a
(i) TrLIK(x) = Z::ax,
a
(i) NL1dx) = flax.
a

,Proof: Thecharacteristic polynomial frU) is a power

fety=p@), d=[L:KW],
of the minimal polynomial

Px(t) = tm + crtm-1 +---+Cm, m = [K(x): K],

of x. :Infact, 1,x, ... , x*~ 1 is a basis of KX IK, and if a1, .. ,ad isa
basis of L IK(x), then
A X, X g g, e dgx™

is a basis-ofL | K. The matrix ,of the linear transformation Tx : y r-+ Xy with

respect to this basis has obviousl,yonly blocks -along the diagonal, each of
them equal Jo

0 | 0
0 0 J

.Q. |
0 0

-Cm -Cm-:J -Cm-2 -cl -
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The corresponding characteristic-polynomial is easily checked .to 'be
™ +c,t™ 4+ - -4+CIM= Px(),
so that finally fr(t) = PxCit.

The set HomK (L, K) of all K -embeddings of L is partitioned by the
equivalence relation

a~—~r ¢==> ax =rx

into m equivalence classes of d elements each. If a;, ...,om is asystem of
representatives, then we find

Px(t)— -mTT(t - o),
i=I

and fx(t) = NP, (t - aixi =N;:l 1a~at - ax) = fla(t - ax). This
proves -(i), and therefore also{ii) and (iii), after Vieta. O

(2.7) CoroHary. In -a tower of finite field extensions K C;.L C;.M, one has

Trijk oTrame =Trmk s Newg o Nmjp = Nuk -

Proof.: We assume that M IK is separable. The set HomK (M, K) of K -
embeddings of M is partitioned-b_ythe relation

a~1 < o|lL=1iL
intom = [L : K] equiv@ence classes. If a1, ... , am is asystem ofrepresen-
tatives, then HomK{L, K) = {ai IL 11 = 1, ... , m), and we find
TMidx) = L J. ax= ETra;MIa;da;x) =L oi TrM1L(X)
i=l a~a; i=I i=I
= Tro i (Tra L (X)) .
Likewise for the norm.

-‘We will not need the inseparable case for the sequel. However it follows
easily from what we have shown above, by passing to the maximal :Separable
stibextension MsIK. Indeed, for the inseparable degree [M : KJ;

[M: Ms] one has [M: K]i =TM: LJi[L: KJ;and

TrM1K(x) = [M: K];TrwlK(x), NM1dx) = Nw1qdx)IM=KJ;
(see [143], vol. I, chap. I, §10). O
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The discriminant ofa basis a1, ... , an of a separable extension L IK is
defined by
e, ... a) = det((o:a,))?,
whereer;,i =1, ... , n, varies over the K -embeddings L -+ K..Because of
the relation
TrL!K(aiaj) — L)oJai)(crkal),
k

the matrix (TrLIJK(aw;J) is the product of the matrices (akaiyt and (akaj).
Thus one may also write

d(a,, ..., ctn)= det(TrrlK(aia;)).
In the special case of a basis of type 1,0, ... , en-i One gets
d(l,0, ... ,en-n= 11(0i - 01)2
i<j

where ei -= a;0. This is seen by successively multiplying each,of the first
(n - 1) .columns in the Vandermonde matrix

I On O; cor-l
by 0: and subtracting it from the following.

(2;8) Proposition. If LIK is separable and as, .. , an .is a basis, then the
discriminant

dlery, .. ..oon) #0,
and

(x,y) — TrL1K(xy)
'is a nondegenerate bilinear formon the K -vector space L.

Proof: We first showthat the bilinear form (x, y) = Tr(xy) is nondegenerate.
Leto he.a primitive element for L IK, i,e., L = K(0). Then 1,0, ... , gn-!
is a basis with respect to which the form (x, y) is given by the matrix

M = (Tr,L1K(0i-i0J-1)k1=1...., n,It isnondegenerate because, for0i = ai 0,
we have

det(M) = d(1,0, ... ,en-)= J](0i -01)? == 0.
i<j
Ifa,, ..., <xnis.anarbitrary basis of LI K, then the bilinear form (X, y) with

respect to this basis is given by the matrix M = (Tr L|K(<xi a j)). From the
above it follows that d(a1, ... , an) = det(M) # 0. 0
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After this review from .the theory of fields, we return to the integrally
dosed integral domain A with field of fractions K, .and to its integral closure
B in ihe finite separable extension L jK. If x E B is an integral element of
L, then all of its conjugate.s ax are also integral. Taking into
account that A is integrally closed, i.e., A = B n K, (2:6) implies that

TrLIK(X), NLrK(X)EA.
Furthermore, for the group o-funits of B over A, we obtain the relation
Xe B* {::=3 NL1K(X) EA*.

ForifaNL1dx) = |, aEA, then 1 = ana ax= yx for somey EB. The discriminant
is often u.seful because -of the following

(2.9) Lemma. Letail, ... , an be a basis of L IK which-is contained in B, of
discriminantd = d(a1, .. , an). Then one has

dB-@ Aal +---+ Aan.

-Proof: If a = a,a , +---+a-nan EB, a; E K, then the.a; are a solution of
the .system of=linear equations-
TrLfK-(aia) = 1:Tr.L1daiaj)Gj,
i
and, asTrLfK (aia) E A, they are given as the quotient of an element of A
by the determinant det(TrLIK (aiaJ)) = d. Therefore daj E A, and:thu-s

da E Aal +:--+ Aan.

A system of elements w1, ... , w,; E B such that each b E B can be
written uniquely as a linear combination

b=a,cvl +-:-+.anwn

with coefficients ai E A, is called an int<!gral basis of B over A (or:
an A€@hbasis of B). Since such an inte.gral basis is automatically a basis
of LIK, .itslength n always .equals the degree [L : KJ of the field extension.
The existence of an integral basis signifies that B is a free A-module
of rank n = [L : K]. In general, such :an ,integral basis does not exist.
If, however, A is a principal ideal domain, then one has the following more
general

(2.10) Proposition. IfLiK is separable and A is ,a principal ideal domain, then
every finitely generated -B -submodule M -j. 0 of L is a free A-module of rank
[L : K]. Inparticular, B admits an integral basis over A.
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Proof: Let M -=ft O be a finitely generated B--submodule of Land a1, , an
a basis of LI K. Multiplying by an element of A, we may arrange for the ai
to fie in B. By (2.9), we then .have dB S; Aa; + * ¢ ¢ + Aan, in particular,
rank(B):::; [L: K], and since a system of.generators of the A-module Bis
also a system of generators of the K-module L, we have rank(B) =L : K|

Let w1, .. , ur E M be a system of generators of the B -module M. There
exists an a EA, a# 0, such that ap,i E B,.i = 1, ... ,r, so that aM eS; B.
Then

adM -S;dB S; Aal +:-++ + Aan =Mo.

According to the main theorem on finitely generated modules over principal ideal
domains, since Mo is a free A-module, so is ad M, and hence also M. Finally,

[L : K] = rank(B) ::; rank(M) = rank(ad M) ::;rank(Mo) = [L :K],
hence rank(M) = [L : K]. O

It is in general a difficult problem to produce integral ba<;es. In concrete
situations it can also be an important one. This is why the following proposition

is interesting. Instead of integral bases -of the integral closure B of A in L,
we will now simply speak of integral bases of the extension LI K.

(".1.11) Proposition. LetL IK and L'IK be two Galois extensions of degree n,

resp. n', such that LN L' = K. Letws, .. , wn, resp. dl, ey, W, bean
integral basis of L | K, resp. L' IK, with discriminant d, resp. d'. Suppose that
d and d' are relatively prime inthe sense that xd + x'd" = 1, for suitable

X, X' E A. Thenwi wlis an integral basis of LL',-of discriminant dn'drn.

Proof: AsL NL' = K, we have[LL' : K] = nn', so the nn' products w;w

do form a basis of LL" IK. Now let a be an integral element of LL', an
write

a= La;;Wiw]_, a;; E K.
i,
We have to show that a;J £ A. Put /3; = Liaid wi,Let G(LL'IL")
{al, ... ,an} and G(LL'IL) = {o:{, ... ,ue}. Thus

GLL'|\K)={owoy|k=1,....n, £=1,...,1'}.

T =(oyw)), a=(o, ...,o.0" . b= (J, .." )y
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one finds det{T)2 = d' and
a= Th.

Write T* for the adjoint matrix of T. Then row-column expansion (2.3) gives
det(T)b = T*a.

Since T* and a have integral entries in LL', the multiple d'h has integral
entries in L, namely d'f3J = Lid'aiJ Wi. Thus d'aiJ E A. Swapping the roles
of (w;) and (wl),one checks in the same manner that daiJ E A, so that

aiJ = xdaiJ +x'd'au E A.

Therefore w; wlis indeed an integral basis of LL'IK. We compute the
discriminant L1 of this integral basis. Since G(LL'IK) = {oJc'.T@ | k =

I, ... ,n, £ = 1, ... ,nil, it is the square of the determinant of the
(hn' x nn")-matrix

M = (crka; WjWj) = (akWi a;wj).

This matrix is itself an (n' x n')-matrix with entries (n x n)€matrices of which
the (£, })-entry is the matrix Qo:owlwhere Q = (akw;). In other words,

oy { Eola 1
o oy (EE )

. ) ) E|7 |
0 Q/ \ Eojw, 1 nwn,

Here E denotes the (n X n)eunit matrix. By changing indices the second
matrix may be transformed to look like the first one. This yields

M =

A = det(M)? = det(Q)" det((o[w))) ™" = d"'d". O

Remark: It follows from the proof thatthe proposition is valid for arbitrary
separable extensions (not necessarily Galois), if one assumes instead of
L N-L'= K that L and L' are Jinearly disjoint.

The chief application of our considerations on integrality will .concern the
integral closure ok S; K of Z € (Ql in an algebraic number field K. By
-proposition (2.10), every finitely generated OK-suomodule a of K admits
a Z-basis a,, ..., cm,

a=72a;+ -+ Zan.

The discriminant
detl, ... ,an) = det((aa;))”
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cis independent of the choice of a Z-basis; if a ;,... ,a® is another basis,

then the base change Thatrix T = (ai)), a; — 1j aij<I(j, as well as its inverse,
has integral entries. It therefore has determinant +1, so that indeed

d(@a;, ..., a®) =det(T)2d(a1, ... ,an)=d(ai,...... , an).
We may lherefore write
d(a) = d(ai, ... , an)-

In the special case of an integral basis cvi, .. , Wn of 0K we obtain the
discriminant of the algebrak number field K,
dK=d(OK)=d(cv1, ... ,cvn)-

In general, one has the

(2.12) Proposition. If U S; a' ar-e two nonzero finitely generated o K -sub-
modu:Jes of K, thenthe-index (a' : a} is finite and satisfies

d(a) =(a: n)z2d(n).

All we have to show is that the index (n':.n) equals the absolute value
of the determinant of the base change matrix passing from a Z-basis of a
to a Z-basis of a'. This proof is part of the well°known theory of finitely
generated Z .modules.

Exercise 1. Is 3;4.__231 an algebraic integer?

Exercise 2. Show that, if the integral domain A is integrally closed, then so is the
polynomial ring A[t].

Exercise 3. In the polynomial ring A = Q[X,-Y], .consider lhe principal ideal
p ={X2- Y?%). Show that pis .a prime ideal, but A/.P is not integrally closed.

Exercise 4. Let D be a squarefree rational integer |- 0, 1 and d the discriminant of
the quadratic number field K = Q(v'J.5). Show that

d =D, if D=1 mod 4,
d =4D, if D=2o0r3 mod 4,
.and that .an integral basis of K is given by {I, JD) in the .second case, by
{1, I (1 +V'D)l in the first case, and-by {1, %(d + v'd)} in both cases.
Exercise 5. Show that{I,Ti,V'ZZ} is an integral basis of QI(T2).
Exercise 6. Show that.{1,0, ¥%2(0+0%) is an integral basis ofQ(0},0° -0-4 = 0.

Exercise 7. The discriminant dk of an algebraic number fieW K is always= 0 mod 4
or= 1 mod 4 (Stickelberger's discriminant relation).

Hint: The determinant det(a;w;) of an integral basis wf is a sum of terms, each
_prefixed by a positive or a negative sign. Writing P, resp. N, for the sum of the
positive, ,resp. negative terms, one finds dKk = (P - N)2= (P + N)2 - 4PN.
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§3. Ideals

Being a generalization of the ring Z S:3; Q, the ring o K of integers of an
algebraic number field K is at the center of an our considerations. As in Z, every
non-unit a # 0 can be factored in 0k into a product of irreducible
elements. For if a is not itself irreducible, then it can be written as a product
of two non-units a = f3y. Then by,§2, one has

1 < |NKIQ(ﬁ)l < IA?K!Q(CE)i 5 1 < |NK|Q(}')I << iNK@(&')

L}

and the prime decomposition of a follows by inducfion from those of f3
and 'Y. However, contrary to what happens in the rings Z and ,;;z[,i], the
uniqueness of prime factorization does not hold in general.

Example: The ring of integers of the field K= Q (H) ,is given by 82, exercise

4,as ok = ;;z,+ ZH. Inthisring, the rational integer 21 can be decomposed in
two ways,

21=3.7=0 +23=5). 0 -2/ -'s).

All factors occurring here are irreducible in o k. For «if one had, for
instance, 3 = af3, with a, f3 non-units, then 9 = NKrQ(a)N KIQ(/3) would
imply NkilQl(a) = £3. But the equation

NKIQX +yN) = x2+sy2 = 43

has no solutions in Z. In the same way it is seen that 7, | + 2,J=s, and
1- 2,J=sare irreducible. As the fractions
dx2R 1£2)=s
3 7

do not belong to ok, the numbers 3 and 7 are not associated to 1 + 2H
or 1 - 2H. The two prime factorizations of 21 are therefore essentially
different.

Realizing the failure of unique factorization in general has led to one ohhe
grand events in the history of number theory, the discovery of ideal theory by
EouMw kummeRr. Inspired by the discovery of complex numbers, Kummer's
idea was that fhe integers of K would have to aamit an embedding into a
bigger ,domain of "ideal numbers" where unique factorization into "ideal
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prime numbers™ would hold. For :instance, in the example of
21 =3 .7 =-0+2./=510 -2-v'=s),

the factors on ,the .right would be composed of ideal -Prime numbers pa, p2.
-p3, p4,, subject to the rules

3 = Prp2, =p3p4, 1+2/=5=PtP3, 1- 2-J=s= P2P4.

This would resolve the above non-uniqueness into the wonderfully unique
factorization
21 = (pip2)(Papa) = (P1p3) (p2p4).

Kummer's concept of "ideal numbers"” was iater replaced by that of ideals
of the ring 0 k. The reason for this is easify seen: whatever an ideal humber
,ashould be defined to be, it ought to be linked to certain numbers a E ok
by a divisibility relation ula satisfying the following rules, for.a,b,)._ E 0 K,

aa and -alb ==> al.axb; ala ;) alAa.
And an-ideal number a should be determined by the totality of its divisors
in ok
n={aceox |l ala}.
But in view of the rules for divisibility, this s.et is €rn idea-lof ok--

‘This is -the reason why RICHARD DEDEKIND re-introduced Kummer's «ideal
numbers" as being the ideals of ok. Once this is done, the divisibility relation
a | a can simply be defined by the inclusion a E a, and more generally the
divisibility relation al b between two ideals by b € a. 1n what follows, we

will .study .this notion of divisibility more closely. The basic theorem here is
the following.

(3.1) Theorem. Thering ok is noetherian, integrallyclosed, and every prime
ideal p ::/= 0-is a maximal ideal.

Proof: bk -is noetherian because every ideal a is a finitely generated Z-
module by (2.10), and therefore a fortiori a finitely generated ok -module.
By §2, 0X is also inte,grally closed, 'being the integral closure=of 'll, i-n K.
It thus remains to show that each prime ideal p ::/= 0 is maximal. Now, -pn Z
is a-nonzero prime ideal (p) in Z: the primality is clear, amLif yE p, y ::/= 0,
and

Yn +alyn-l +---+an =0
is an equation for y witha; E Z, .an /= 0, then a;; E:p N Z. The integral
domain .0 = ox/P arises from k = Z/pZ by adjoining algebraic elements
and is therefore again .afield (recaH .the fact that K[a] — K(a), if a is algebraic).
Therefore p isa maximal -ideal. O
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The three properties of the ring ok which we have just proven lay the
foundation of the whole theory of divisibility of its ideals. This theory was
developed by Dedekind, which suggested the following

(3.2) Definition. A noetherian, integrally closed integral domain in which
every nonzero prime ide::11is maximal is called a Dedekind domain.

Just as the rings of the fonn cak may be viewed as generalizations of the
ring Z, the Dedekind domains may be viewed as generalized principal ideal
domains. Indeed, if A is a principal ideal domain with field of fractions K, and
LIK is afinite field extension, then the integral closure B of AinL is, in
general, not a principal ideal domain, but always a Dedekind domain, as we
shall show further on.

Instead of the ring ok we will now consider an arbitrary Dedekind
domain o, and we denote by K the field of fractions of o. Given two
ideals a and b of o (or more generally of an arbitrary ring), the divisibility
relation alb is defined by b c;;;;a, and the sum of the ideals by

a+ b0|a+ bla Ea hEbj.

This is the smallest ideal containing a as well as b, in other words, il is
the greatest common divisor gcd(n, b) of n and b. By the same token the
intersection n N b is the 1cm (least common multiple) of @ and b. We define
the prnduct of nand b by

ab= | Laibi | ai Ea, ni EB}.

With respect to this multiplication the ideals of o will grant us what the
elements alone may refuse to provide: the unique prime factorization.

(3.3) Theorem. Every ideal a of o different from (0) and (I) admit’> a
factorization
a= Pl +Pr

into nonzero prime ideals Pi of o which is unique up to the order of the factor. €.

This theorem is of course perfectly in line with the invention of “ideal
numbers”. Still, the fact that it holds is remarkable because its proof is far
from straightforward, and unveils a deeper principle governing the arithmetic
in 0. We prepare the proof proper by two lemmas.
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(3.4) Lemma. For every ideal o #- 0 of o there exist nonzero prime ideals
1, 2, ..., r such that

a2pipr Ry

Proof: Suppose the set mt of those ideals which do not fulfill this condition
is nonempty. As o is noetherian, every ascending chain of ideals becomes
stationary. Therefore 1.1t is inductively ordered with respect to inclusion and
thus admits a maximal element o. This cannot be a prime ideal, so there exist

elements h1, h2 E o such that b1h2 E a, but b1, h2 ft. 0. Put 01 = (hi)+ a,
02= (h2) +a. Then a® 01, a @ a2 and o1az i;: a. By the maximality of a.
both a; and a, contain a product of prime ideals, and the product of these

products is contained in a, a contradiction. o

(3.5) Lemma. Ler p bea prime ideal of o and define
p-"@\XEKIxp<;0}

Thenoneha8ap ! := !LiaiXilai &0, Xi £ p-\ #- o,foreveryidea/o-# 0.

Proof: Leta e p, a - 0, and i;1p2- *Pr i (a)<;: p, with r as small as
possible. Then one of the p;, say p;, is contained in €. and so p; = p because
p1is a maximal ideal. (Indeed, if none of the 13; were contained in p, lhen
for every i there would exist a E 1;* 1] such that al -cr E p. But p is
prime.) Since P2e+Pr rf. (a), there exists h E py---p,. such that h ¢:. ao,
ie., a-*h . 0. On the other hand we have hp i;: (a), i.e., a-*hp <;: 0, and
thus a-h E p-*. Il follows that p-* -=po.

Now let a-/=- 0 be an ideal of 0 and a7..... an a system of generators.

Let us assume that ap * = u. Then for every x E p-*

xa; = L.,a;Jcti. a&; Eo.
)
Writing A for the matrix we obtain A(u:1, .. ,a;)1=0.By(2.3).
the determinant d = da; = =dctn =0 and thus d = 0.
It follows that x is integral over o, being a zero of the monic polynomial
f(X) = det(X8;; -a1J) E o[X]. Therefore x E o. This means that p-* = o,
a contradiction. a

Proof of (3.3): I. Existence of the prime ideal factorization. Let 9J1 be the
set of all ideals different from (0) and (1) which do not admit a prime ideal
decomposition. If Mt is nonempty, then we argue as for (3.4) Ihat there exists
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a maximal element a in 9Jt It is contained in a maximal ideal p. and the
inclusion O £;; p-! gives us

as;ap-'s;pp-Leo.
By (3.5), one has a € ap-'and p € pp-* e 0.Since p is a maximal ideal,
it follows that pp-* = 0. In view of the maximality of a in 9'It and since
ie.ap-* ¥- 0, the ideal op-* admits a prime ideal decomposition
*)),-and so does a= ap-'p = p;- -PrP, a contrndic.:tion.

II. Uniqurness of the prime ide.tl factorifation. Fora prime ideal pone has:
ab€@ p€@ as;porb C;;p, ie, plab=>plcior plb. Lei

a= P1P2---Pr=qlq2 -q_,
be two prime ideal factorizations of a. Then p, divides a fo@tor q;. say q,
and being maximal equals qi. We multiply by P\" and obtain, in view of
Pi #- PLly; 1= o, that

PeoPr =0z i

Continuing like this we see that r — s and, possibly after renumbering,
p.=q;,foralli=

Grouping together the occurrenc:es of the same prime ideals in the prime ideal
factorization of an ideal a#- 0 of 0. gives a product !"\'presentation

a=p@' +p
In the sequel such an identity will be automatically understood to signify
that the p,- arc pairwise distinct. If in particular a is a principal ideal (a),

then - following the tradition which tends to attribute to the ideals the réle
of «ideal numhers” - we will wrile with a slight abuse of notation

o

V1=0.

a=pp ot
Similarly, the notation a la is oflen used instead of al(a) and (a, b) = |

is written for two relatively prime ideals. instead of the correct fonnula
(a, b) =a+ b = Cl Fora product a = a; -an of relalivcly prime ideals

al... , un,one hasan analogue of the well-known "Chinese Remainder Theorem”
from elementary number theory. We may fonnulate this result for an arbitrary
ring taking into account that

Indeed. since a;la. i .... 11w, e tind on the one hand that 0 € N;',, 1 a;.
andfora E ay. we find that Oi |a' and therefore, the factors being relatively
prime, we get a= ni--Unla,i.e., a Ea.
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(3.6) Chinese Remainder Theorem. Let a1,
such thatai +a;=V fori # j. Then,ifa = n

an be ideals in aring o
=,a,oneha.@

o/la € EBO/a;
=l

Proof: The canonical homomorphism

o--+ EB o/a;, ai--- +EBamodal,

has kernel a = ni a;. It therefore suffices to show that it is surjective.

For this, let x; mod a; E o/ai, i = I,..,n, be given. If n = 2. we
may write | = a1+ az a; E a, and putting x = x2a1+ x1a2 we gel
x=x1mod a1, i =1,2.

If n > 2, we may find as before an element y1 E o such that

=1 mod a;- Yy, =0 mod na;‘
i-2

and, by the same token, elements y2, ... ,y,, such that
y; = I'moda, );=0moda; fori# j

Putting x = xiv1 ++  + XnYn we find x =xi mod a;, i = I, ... ,n. This
proves the surjcctivity. [m)

Now let o be again a Dedekind domain. Just as for nonzero numbers, we may
obtain inverses for the nonzero ideals of o hy introducing the notion of
fractional ideal in the field of fractions K.

(3.7) Definition. A fractional ideal of K is a finitely generalcd o-submod-
ule a#- 0 of K.

For instance, an clementa € K* defines the fractional “principal ideal”
(a)= ao.Obviously, since o is noetherian, an o-submodule a#- 0 of K is
a fractional ideal if and only if there exists ¢ E 0, ¢ ¥- 0, such thatcaS; o
is an ideal of the ring o. Fractional ideals are multiplied in the same way
as ideals in 0. For distinction the latter may henceforth be called integral
ideals of K.

(3.8) Proposition. The fractional ideals fom1 an abclian group, the ideal
group JK of K. The identity element i.€ (I) = o, andthe inverse of ais





a-1=IxEKjxas;0)
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Proof: One obviously has associativity, commutativity and o(l) = a. For
a prime ideal p, (3.5) says lhat p £ pp-* and therefore pp-* = o
because pis maximal. Consequently, if a= pi+-Pr is an integral ideal,
then b = pj p; ~ isan inverse. ba = a implies that b € a-' Conversely,

if xa s; 0, thenxab s; b, so x Eb because ob= o. Thus we have b = a-1,

Finally, if a is an arbitrary fractional ideal and ¢ E 0, C -|- 0, is such that
cas; o, then (car-! =c-lo-1is the inverse of ca, so aa ' [m]

(3.9) Corollary. Every fractional ideal a admit.€p a unique representation as a
product
a@TTP™
P

with vp £ Z and vp = 0 for almost all p. In other words, Jk is the free abe/ian
group on the set of nonzero prime idea/.€) p of o.

Proof: Every fractional ideal a is a quotient a= b/c of two integral ideals b
and c, which by (3.3) have a prime decomposition. Therefore a has a prime
decomposition of the type stated in the corollary. By (3.3), it is unique if a
is integral, and therefore clearly also in general. o

The fractional principal ideals (a)= ao,a EK*, form a subgroup of the
group of ideals Jk, which will be denoted Pk. The quotient group

Clic = e /Py

is called the ideal class group, or class group for short, of K. Along with
the group of units o€ of o, it fits into the exact sequence

+ -+ K*-—t fK---+ Cf'---+ 1,

where the arrow in the middle is given by a r—+ (a). So the class group
CIK measures the expansion that takes place when we pass from numbers
to ideals, whereas the unit group o™ measures the contraction in the
same process. This immediately raises the problem of understanding these
groups o* and CIK more thoroughly. For general Dedekind domains they
may turn out to be completely arbitrary groups. For the ring ok of integers
ina number field K, however, one obtains important finiteness theorems,
which are fundamental for the further development of number theory. But
these results cannot be had for nothing. They will be obtained by viewing
the numbers geometrirnlly as lauicc points in space. For this we will now prepare
the necessary concepts, which all come from linear algebra.
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Exercise |. Decompose 33 + 11 R inio irreducible integral clements of Q(A ).
Exen::lse 2. Show !hat
54=2-3)= 13+/= 13-./-47
2 2
are two ially different d pn@iti into i i integral elements of
Q(,,Gi'i).

Exercise J, Le.:! d be squarefree and pa prime number not dividing 2d. Leto he the
ring of integers of Q( ../d ). Show Ihal (pI = po is a prime ideal of o if and only if
Ihe congruence .1? = d mod p has no solution.

Exercise 4. A Dedekind domain wilh a finile number of prime ideals is a principal
ideal domain.

Hinl: 1f n = p:'...p;@ f::.0 i;.an idcul, then choose elements i, e p,,p; and apply
the Chine€ remainder theorem fur 1hc coset.s ;riv, mod p;',**

f.xerclse S. The quotient ring €1/0 Of @ lcdekind domain by an ideal n cf; 0 is a
principal ideal domain.

Hint: Por n = pn the only proper ideals of o/a are given by p/pn, ... , u.*/p".
Chool\e ;r €p, p2andshow that p' = oiv + p".

Exercis€ 6. Every ideal of 1 Dedekind domain can be gcllerated by 1wo eletnl:nls.
Hinl: Use exercise 5.

Exercise 7. In a noetherian ring R in which every prime ideal is maximal. each
descending chain of ideals n; 2 112 2 +++ heeomes statiomiry.

Hinl: Show as in (3.4) that (0) is w product p;---p, of prime ideals and that the
-thain /2 2 P1 2 P1P2 € <= 2 Pi---P, = (0) can be refined into a composition

Exercise 8. Let m be a ncnzero integral ideal of the Dedekind domain ci. Show that
in every ideal class of Cfi, there exists an integral ideal ptime to m.

Exercise 9. U:10 be an integral domain in which all nom:ero ideals admita unique
faclorii.illion into prime icl:ab. Show that c, is a Dedekind domain.

Exercise 10. The fractional ideals a of a Dedekind domain o arc projcclive o-
modules, i.e., given any surjective homomorphism M € N of Cl-modules, each

homomorphism a € N can be lifted to a homomorphim h : 11... M such that
fun=p

§4. Lattices

In §I, when solving the hasie problems concerning the gaussian integers.
We-used at a crucial pluce the inclusion

Z[il <;.C
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and considered the integers of Q(i) as lattice PoinL> in 1he complex plane.
This poinl nf view ha.; been generalized lo arhilmry number fields by
HtRMANN Minkowski  (1864-1909) and has led to results which make up an
essenlial pari of the foundations of algebraic number lheory. In order to
develop Minl<owski's 1heory we first have 10 introduce the general notion of
lattice and study some of its basic properties.

(4.1) Definition. Let\/ bean n-dimensiomi/ JR-vector space. A laUice inV
is 1 subgroup of th@fonn

Fr=zvi+- +zy,

withlinearlyincfependenrvectorsu;, , vm ofV. Them-luple(v;, , vm)
i.\-called a basis and Ihc set

= {nu+ v gek 02y <)

a fundamentul mesh of the lattice. The lattice is c:illcd complete or a Z-
structure o(V, if m = n.

The complelencs.-. of the lattice is ohviou.5ly 1anramoun110 rhe facr thal
the :-et of all 1ranslates </J + y. y e r. of the fundamental mesh covers the
entire space V.

The above definition makes use of a choice of linearly independent
vectors. But we will need a characteril.ation of lauices which is independent
of such a choice. Nore Ch.it, firsc of all, a larricc is a finitely genera.red
subgroup of V. Bui not every tinilely generaled subgroup is a lattice - for

instance Z + Z../2 £; IR. is not. But each lattice I' = Zv,+ -+ + zvm
has the special property of being a discrete subgroup of v. This is to say
that every point y e r isan isolated point in the sense that there exists a
neighbourhood which contains no other points of I'. In fact, if

Y =alvi+- +a,VmEr,
then, extending v, . - v,,, to abasis v;-. .. v,, of V. 1lhe sci

{xlv,+---+_(11v,,|><|ER, la;- x;l < | fori=1.. mI

dearly is such a neighbourhocxl This property is indeed characteristic.

(4.2) Proposifion. A suhgroupr € V isafartice if and only if it is discrere.
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Proof: Lei 1" be a discrete subgroup of V. Then r is closed. For let U be an
arbilrary neighbourhood of 0. Then 1hereex.ists a neighbourhood U’ € U ofO
such that every difference of elements of U" lies in U. Jf there wen::an x 'I- r
belonging to the closure of I, then we could find in the neighbourhood x+U"
of X two distinct elements y1,Y2 E I', so that O#-y:- Y IEU - U @ U.
Thus O would not be an isolated point, a contradiction.

Let VO he the linear subspace of V which is spanned by 1he set I, and
let m be its dimension. Then we may choose a basisui, . um of Vo which
is contained in I, and form the complete lattice

H=Zu+ -+ EZu, =T

of Vo, We claim that the index (I' ; fi1) is finite. Tosee this. let Y; E r vary
over a system of representatives of the cosets inr /ro. Since fii is complete
in Vo. the translates <Pi,+ y, yE rQ, of the fundamental me@h

<Po={x1lul+ +xmllmlL\.i ER, 0:Sx; < |j
cover the enlire space Vo. We may therefore write
Vo= iyt €@, yw e ln C V.

Asthe i, = y;- yo: € r lie discretely in the bounded set tPq, lhey have to
be finite in number. In fact, the intersection of r with the closure of <P is
compact and discrete, hence finite.

Puning now g =(I": I'p. we have qI' S; I(), whence

re !li=Z(@ul)+ --+z(tum)-

By Ihe main theorem on finitely generated abclian groups, r therefore
admils a Z-basis Vi-....V,, r S m, ie. r =Zvi+ ---+ Zvr. The
veclors 114 -...- V,- are also IR-linearly independent because they span the
m-dimensional space Vq. This shows that r is a lattice. [m]

Next we prove a criterion which will tell us when a lattice in the space V -
given, sly, as a discrete subgroup r €V - is complete.

(4.3) Lemma. A fauice I'inV is complete ifandonly ifthereexistsu bounded
subset M € V such 1hal the collccrion of :di Iramlates M + y. y E r. coven.
1he entire space V.
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Proof: If I'= Zv, +* ¢ * + Zvn is complete, then one may take M to be the
fundamental mesh <iJ = {x;v;+°* +xnvn 10 xi< [}

Conversely, let M be a bounded subset of V whose translates M +y,
for y E I' cover V. Let Vo be the subspace spanned by I We have to
show that V = Vo. So let v EV. Since V. = LIYEI'M +y) we may write,
foreach v EN,

w =av+Yv, av EM. Yv EI'E;; Vo.
Since M is bounded, tav converges to zero, and since Vo is closed,

v=lJim @av+ Jim @Yi= lim @Yv E Vo, [m]
Vet e [l

Now let V  be a euclidean vector space, i.e., an IR-vector space of finite
dimension n equipped with a symmetric, positive definite bilinear form

GV XV-+R..
Then we have on V a notion of volume - more precisely a Haar measure.

The cube spanned by an orthonormal basis e1, ... , en has volume I,
and more generally, the parallelepiped spanned by n linearly independent
vectors u1, .. i,
@ ={xut o xy[neR 0=y <1
has volume
vol(<P) = IdetAl,
where A = (ak) is the matrix of the base change from e;, . en to
Vi, .. , Un, so that v; = I:;kaskek, Since
((vi.up)y = =(La;kajk) =AA"
k

we also have the invariant notation
vol(4>) = /del((v.-, Vj))illz,

Let I' be the lattice spanned by uj, ....vn.Then Qi is a fundamental
meshof I, and we write for short
vol(I = vol(<P).
This does not depend on the choice of a basis uj, .., uy; of the lattice
because the transition matrix passing to a different basis, as well as its
inverse, has integer coefficients, and therefore has detenninant £ so that
the set <P is transfonned into a set of the same volume.

We now come to the most important theorem about lattices. A subset X
of V is called centrally symmetric, if, given any point x EX, the point -x
also belongs to X. It is called convex if, given any two points x, y E X, the
whole line .@egment (ly +(1-1)x/0 € t € 1J joining X with y is contained
in X. With these definitions we have
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(4.4) Minkowski's Lattice Point Theorem. Let I' be a complcre lattice in
tlie euclidean vector space V and X a centrally symmetric, convex subset ofV.
Suppose tliat

vol(X) > zn vol(I').

Then X contaim at /ea.<;t one nonzero lartice pointy € I'.

Proof: It is enough to show that there exist two distinct lattice points
YI,v2 € I' such that

1 !
(zx tw) ’W[EX+‘/_) #0h
In fact, choosing a point in this intersection,
ix1+Y1= 4y, nnelX,

we obtain an element

y=yl-Y2=
which is the center of the line segment joining x, and -x;, and therefore
belongs to X n I'.

Now, if the sets %2 X +vy, y E I', were pairwise disjoint, then the same

would be true of their intersections <Pn(%X+y)  with a fundamental mesh <P
of I, i.e., we would have

vl 8> L vol(<>n (| X + ).
yeCJ 2

But translation of <P n (%X +y) by -y creates the set (<P - y) n %X of
equal volume, and the <P - 'y, y E I' cover the entire space V, therefore
also the set % X. Consequently we would obtain

vol(<P) @ L vol((<P - y) n 1X) = vol(@X) = € vol(x),
er

which contradicts the hypothesis. [m]

Exercise |. Show that a lattice I' in IR" is rnmplctc if and only if the quotient IR"/I'
1s compact.

Exercise 2. Show that Minkowski's laltice point theorem cannot he improved,
by giving an example or a centrally symmetric convex set X s;; V such that
vol{X) = 2"vol(I') which docs not contain any nonzero point of the lattice I'.
If X is compact, however, then the €tatement (4.4) docs remain true in the case of
equality.
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Exercise 3 (Minkowski's Theorem on Linear Forms). Let

Li(X1, X,) = i= 1,
be real linear forms such that det(a,;) ¢;i 0. and letc1, , .. , c,, be positive real numbers
such that c;---c, > Idet(a;J)l. Show that there exist integers m,. .mn e Z such
that
ILL(ma, .... 1111 <c,, i—1,

Hil\t: Use Minkuwski's lallice point Ifleorcm.

§5. Minkowski Theory

The basic idea in Minkowski 's treatment of an algebraic numher lidd K 1Q
of degree n is to interpret its numbers as points inn-dimensional space. This
explains why his theory has been called "Geometry of Numbers.” It seems
appropricltc, however, to follow the current trend ;md call it "Minkowski
Theory" instead, because in the meantime a geometric approach to number
theory has been developed which is quite different in nature and much
more comprehensive. We will explain this in § 13. In the present section,
we consider the canonical mapping

oja=(ra),

which results from the n complex embeddings r : K -+ C. The C-vector
space Kc is equipped with the hamitian scalar product

Ly =3 ar ¥

Let us recall that a hennitian scalar product is given by a form Ji (x, y)
which is linear in the first variable and satisfies H(x.v) = H(y,x) aswell
as H(x,x) >0 forx -f- 0. In the sequel we always view KL asa hermitian
space, with respect to the “standard metric" (*)-

The Galois group G(C/IR) is generated by complex conjugation

F zts Z

The notation F will be justified only later (see ch,1p. I11. *4). F acts oh the
one hand on the factors of the product I'C, but on the other hand it also
acts on the indexing set of r's: to each embedding r: K-. C corresponds
its complex conjugate f: K --+ C. Allogether, this defines an involution
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which, on the points z = (zr) E Kc, is given by

The scalar product ( , ) is equivariant under F, that is
(Fx,Fy) = F(X,y).
Finally, we have on the IC-vector space Kc= TTrc ine linear map
Tr: KC -~ C,
given as the sum of the coordinates. It is also /< invariant. The composile
K_ 1, .KcC
gives the usual trace of K IQ (see (2.6), (ii)),

TrK1,:;(a) = Tr(ja).

We now concentrate on the R-vector space
K =Kz =[]

consisting of the G(CIR.)-invariant, i.e., F-invariant, JXlints of Kc. These
are the points (zr) such that =r = Z,. An explicit description of KR will be
givenanon. Since fa= W fora EK, one has F(ja) =)a.This yieldsa mapping

ji K - K

The restriction of the hermitian scalar product {, ) from Kc to Kt gives a
scalar product

i Kp x Ky = 12
on the IR-vector space KR., Indeed, for x,y E K"J:.., one E E. in

view of the relations = {Fx Fy) (x,y), \x,y) = = (V.¥),
and, in any case, (x,x) > for x-/=-

We call the euclidean vector space
. T
Ka= [Tj c]

the Minkowski space, its scalar product ( ,) the canonical metric, and
the associated Haar measure (see *4, p. 26) the canonical measure. Since
TroF = F oTr we have on K'3. the R-linear map

T K@ JR,
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and its composite with j : K -+ KE is agafo the usual trace of K H),

TrK 5 (a) = Tr(ja).

Remark: We mention in passing - it will not be used in the sequel - that
the mapping : K -+ KR identifies the vector space Kk with the tensor
product K @Q

K®QR_::_..,.K1<., a®xl-------- +(ja)x.
Likewise, K ®<,- C ---=-,, Kc. In this approach, the inclusion Kc{ C; Kc

corresponds to the canonical mapping K @Q IR 1= K ®JC which is induced
by the inclusion IR"- C. F corresponds to F(a ® z) =a® zZ.

An explicit description of the Minkowski i;pace K"3. can be given inthe following
manner. Some of the embeddings r : K -—--+ C are real in that they land already
in IR, and others are complex, i.e., not real. Let

Pi, ... Pr: K-

be the real embeddings. The complex ones come in pairs

LTy, 0,8, K — T

of complex conjugate embeddings. Thus n = r + 2s. We choose from each
pair some fixed complex embedding, and let p vary over the family of real
embeddings and a over the family of chosen complex embeddings. Since F
leaves the p invariant, but exchanges the er, &, we have

Kgr{cz!)eﬂ-‘:i_-pelE. t# = Zal

This gives the

(5.1) Proposition. There is an isomorphism
fi K:@—--n-!R = R=21
given by the rule (zr) 1+ (x,) where
Xp = z1,, Xo-= Re(zo-), xa = Im(:(1).
This isomorphism transfonns the canonical metric (, ) into the scalar product
xy) = Lax.y,,
wherea, = 1. resp.o:, = 2, if r is real, resp. complex.





©5. Minkowski Theory 31

@roo,rT: he m;pi@@learly an isomo'hism. If . = @Zr).= (Xr +iyr).
z = @) = 1 +'Yr>€ K. Ihcn zpip = xpxut, amit in view of yr, = x<7
and y€ = X, one gets

026 +2<120 = 2,20+ 2,26 = 2Re(uZQ) = 2x.x@ + x<x@)
This proves the claim concerning the scalar products. D

The scalar product (x,y) = LI cioxeve transfers the canonical measure
Lr%ne)yKR to rr+2.<. It obviously <liffers from the standard Lebesgue meas-

volernonical(X) = 2s volL.c1x:sg...(/(X)).

Minkowski himself worked with the Ubcsgue measure on Ir+2t and
most textbooks follow suit. The corresponding measure on KR is the one
determined by the scalar product

xy) =1 1 xy.

Y a
This scalar product may therefore be called the Minkowski metric on KR,
But we will systematically work wilh the canonical metric, and denote by
vol rhe corresponding canonical measure.

The mapping j : K --,. K@ gives us the following lattices in Minkowski
space Kw:.

(5.2) Proposition. 1fa -f. 0 is :m ide:tl of OK, then I' = ja is a complete
lattice ill KR, Its fundamental mesh has volume

vol(1n = /id, i (o : a).

Proof: Letales...e a;; be a Z-hasis of a, so lhal I'= Zja, + =-+Zja,,.
We choose a numbering of the embeddings r: K - C, rq, ... ,r,.and
fonn the matrix A= hra;). Then, according to (2.12). we have

d(@) =dal. ..om = (de! AY2= (OK : 02 doK) = (ok : af a
and on the other hand

(Ua;,jad) =(ff!rlt:a;ft:ak) =AAr.
This indeed yields
vol(I") = Idet((jo;,Ja,))i "*? = Idct/11= /id, i (ok: a) D
Using this proposition. Minkowski's lauice poim theorem now gives the

following resull, which is what we chiefly intend to use in our applicationf>
to number theory.
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(5.3) Theorem. Ler a #- 0 be im integral ideal of K, and lercr > 0, for
T & Hom(K.C), be rcaf numbers such that cr = er and

Tler>  A(oK: o),

where A= (¥}s@. Then thenzexisr.-.a e 0,a ¥:, 0, suchrhat

iml<cr forall Te Hom(K,C).

Proof: The set X = 1(Zr) E Kk | lzrl < ci is cenirally symmetric and
convex. Its volume vol(X) can be computed via the map (5.1)

/K1L@nIR., @ZNe(xn,
given by x, =zp, Xrr = Re(z,r), xn =Jm(:(1). It comes out to be 2" times
Ihe Lebesgue-volume of the image

300=1x)E QIR 1 Ixpl < C,,- Xx@+x} < c! .
This gives

vol(XJ = 25 voll.-be-*oc(/(X)) = 2-- nc2ep) nlre.)) = 2-+sr Moy,
, . .
Now using (5.2), we obtain

VoI(X) > 2:-++:n-s(@ r<€(OK: a)= 2"vul(l').
Thus the hypothesis of Minkowski's lattice point theorem is satisfied. So

Ihere does indeed exi\t a lanice point ja E X, a'F 0. a E n: in other
words Irol < cr. D

There is also a multiplicative version of Minkowski theory. Il is based
on the homomorphism

Ko, KC=9C*.

The mulliplicative group KC admits the homomorphism

given by the product of the coordinates. The composite

Kk J. ke @
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is the usual nonn of K 1Q.
NKiQ(a) = N(ja).

In order to produce a lattice from the multiplicative Ihcory, we use the logarithm
to pass from rnulliplicativc to additive groups

€lce__, IR zi-+ loglzl.
It induces a surjective homomorphism
1,K:--,nrn:.

and we obtain 'he commutative diagram

K€ K(G —="=- nriR
IIIII| | |
N T
Q- + C-@ R.

Thienvolution F E G(CIR) acls on all groups in 1his di:tgrnm. mwally
on K., on KC as before. and on the points x = (Xr) E nr IR by (Fx)r
One clearly has

Foj=.i- Foe=foF, NoF=FoN, TroF=Tr,

i.e.. the homomorphisms of the diagram are G(Cj!R)-homomorphisms. We
now pass everywhere to the fixed mtxlules under G(CIIR) and obtain the diagram
ket ke s [TL2]

f, "

Q-+ R@ R.

The R-vector space [ nr IR]~ is explicitly given as follows. Separale 1s
ttefore the embeddings r : K - C into real ones, ps. -- . Pr, and pairs
of complex conjugate ones, ai, r1, .. , o', &.,. We obtain a decomposition
which is analogous to the onave saw above for [ Tir C]Q

(n R NRni kxR
‘ ) .

The factor I IR x IR )" now consists of the points (x,x), and we identify it
with R by the map (x,.t),...... 2x. In this way we obtain an isomorphism

[QIRr ;a R+
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whkh again transfonns Ine map Tr: [ nrIR]+ - R inlo the usual map
Tr: R+J----- +R

given by the sum of the coordinates. Identifying [ nr IR]+ with R'. - the
homomorphism
P K — R
is given by
i) = (log l.xp I, .. , log Ixu1. 1, logIx,, 1% - . log Ixn‘lz},

where we write ¥ € K S [], C" as x = (x,),

Exercise |. Write down a constant A which depends only on K such chat every
integral ideal a¥- 0of K contains an element a #- 0 satisfying

ital< A(oi;: )Y/ for all t E Hom(K.C),n = [K: Q].
Exercise 2. Show that the convex, centrally symmetric @t
x-1(,,)eKol z;:1,,1«)

ha€p volume vul(X) = rS (M:e chap. Ill. (2.15)).

Ext:reise 3. Show that in every ideal a=I- 0 of ok lhere exis.€ an a =I- 0 such lhal
IN,qQ(a)l,::: M(o,\: a).
where M = € (€)™ /jd;T (the so-called Minkowski- bound).

Hint: Use exercise 2 to proceed as in (5.3), and make use of the incqu:1lity belween
arithmetic and geometric means,

"1)':|:- z(ljl\zyl}""

§6. The Class Number

As u first application of Minkowski theory, we are going to show that the
ideal class group CIK = JK/PK of an algebraic number titld K is finite.
In order to count the ideals a# 0 of the ring OK we consider their absolute
norm

91(a) = (0., a).

(Throu£hout lhis book the case of the zero ideal a = 0 is oftc:n tacitly
excluded, when its consideration would visibly make no sen€.) This index
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is finite by (2.12), and 1he name is justifi€ by the special case of a principal
ideal (a) of o,... where we have Ihe identity

(@) = INK1Q()I.
Indeed, if w;, ...- wn isa Z-basis of ok. thena wy, - awy;is a Z-basisof
(a)= aok, and if A= (a,_1) denotes the transition matrix, a w; = f:a;j wj,
then, as was pointed out already in €02, one has | det(A)l = (oK : (a)) as
well as det(A) = NKIQ(a) by detinition.

(6.1) Proposifiun. 1 a = p@'. - p:@is the prime faeroriz,uion of an ideal
a# 0,then one has

Teay = Nep)" - N 3"

Proof: By the Chinese remainder theorem (3.6), one has
ok /a= ok Ip@' G- EB ok /I,

We are thus reduced to considering the case where a is a prime power p".
In the chain
P2 p@2 -2 p"

one has p; :P 1pi+| because of 1hc unique prime factori:L:ation. and each
quotient pi/p’+" is an OK /p-vector space of dimension I. In fact, if a &
p.i pi+l and b =(a)+ pi+l. then p' 2 b @ pi+l and consequently pi = b,
because otherwise b' = bp-* would be a proper divisor of p = pi+lp-,. Thus
A= a mod pi+l is a basis of the OK/p-vcctor space pi/pi+* So we have
pi/pi+l € ok /p and tllerefore

MN(pv) = ©k :p@") = ©k : p)(p: p2).. (pv-1: pl)= Li(pf 0

The proposilion immedialely implies lhc muhiplicalivily
ryi(nb) = ryj(o)ryi(b)
of the ah!.olute nonn. It may therefore be extended to a homomorphism
91:IK---+ R€

detined on all fractional ideals a = np p"f, vil £ Z. The following lemma.
a consequence of (5.3), is crucial for the tiniteness of the ideal clas€y group.

(6.2) 1..emma. Inevery ideal a=F O of OK there cxislsana e a.a# 0, such
rhat
2ZNS p
et = () Vide |92
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Proof: Given r > 0, we choose positive real numbers c. for r E
Hom(K, C), such Ihat cr = er and

'@ @)mat<niayss

Then by (5.3) we find an element a Ea, a-=I-0, satisfying 1ml <Cr.Thus

IN,,0(adl ©13Irnl < (€@)'//4T<n(a)H.

This being true for all ¢ > 0 and since is always a positive integer,
there has to exist an a E a, a #- 0, such

2y o
[Meigte)] = (2] VT | Read. o

(6.3) Theorem. The ideal class group Cf K = IK JPK is finite. Its order
hKk = (h:  PK)

is ca/fed the class number of K.

Proof: If p == Oisa prime ideal of OK and pn Z = pz, then OK/u is a
finite field extension of Z/ pZ of degree, say, f € 1, and we have

<J(p) @ pi_

Given p, there are only finitely many prime ideals p suchthatpn Z = p7.,,
because this means that p1(p). It follows that there are only finitely many
prime ideals p of hounded absolute norm. Since every integral ideal admits
a representation n =Pt - pJ:" where vi >0 and

M) = Rip - Nip)™,

there are altogether only a finite. number of ideals o of ok with bounded absolute
norm 1J1(a) .:".SM.
11 therefore suffices to show that each class laJ E Cl k contains an integral

ideal n; satisfying
1@ . v o (@} Vo1

For this, choose an arbitrary representalivc a of the class, and a y E ok,
y /=0, such thatb = y a-* £0K-By(6.2), there exists a Eb, a i=0, such
that

INKIQ(a)! *<JI(b) '@ 'li((a)b-") € <Jl(ab-J ..c; M.

The ideal ny = ab-' =ay -in E Lal therefore has the required property. D
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The theorem of the finiteness of Ihe class number hk means that passing from
numbers to ideals has not thrust us into unlimited new territory. The
most favourable case occurs of course when hk = I. This means that ok
isa principal ideal domain, i.e., that prime factorization of elements in the
classical sense holds. In general, however, one has hk > 1. For instance,
we know now that the only imaginary quadratic fields Q(,JJ), d squarefree
and < 0, which have class number I are those with

d=-1, -2, -3, -7, - 11,-19, -43, -67, -163.

Among real quadratic fields, dass number | is more common. In the range
2=:d < 100 for instance, it occurs for

d€ 23567 Il 13, 14, 17,19, 21, 22, 23, 29,
31, 33, 37, 38, 41, 43, 46, 47, 53, 57, 59, 61,
62, 67, 69, 71, 73, 77, 83, 86, 89, 93, 94, 97.

It is conjectured that there are infinitely many real quadratic fields of class
number L But we do not even yet know whether there are infinitely many
algebraic number fields (of arbitrary degree) with class number I. It was
found time and again in innumerable investigations that the ideal dass groups
CIK behave completely unpredictably, both in their size and their structure.
An exception to this lack of rule is kunkicHI wasawa's discovery that the
p-part of the class number of the field of p*-Ih roots of unity obeys a very
strict law when n varies (sec 1136], th. 13.13).

In the case of the field of p-th roots of unity, the question whether the
class number is divisible by p has played a very important special réle
because it is intimately linked to the celebrated Fermat's Last Theorem
according to which the equation

xi'+ yP =7/1

for p 2: 3 has no solutions in integers -1- 0. In a similar way as the sums of
two squares x2+ y2 - (x +iy)(x -iy) lead to studying the gaussian integers,
the decomposition of ;,;1+ yI' by means of a p-th root of unity | leads to
aproblem in the ring ZI{ j of integers of Q((). The equation = - xi
there turns into the identity

Yoy y=(Z-X)(Z-0) ==(2-i-P-1).

Thus, assuming the existence of a solution, one obtains two multiplicative
decompositions of the same number in .Z[(]. One can show that this
contradicts the unique factorization - provided that this holds in the
ring Z[(]. Supposing erroneously that this was the case in general - in
other words that the class number hy, of the field Q(() were always equal
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10 | - some aclually 1houghllhey had proved "Fennal's Last Theorem" in
1his way. kwimcH, however, did not fall into this Irap. Instead, he proved that
the arguments we have indicated can be salvaged if one only assumes pf hp
instead of hp = 1. In this case he called a prime number p regular. otherwise
irregular. He even showed that p is regular if and only if the numerators
of the Bernoulli numbers B2, Hs, . . Bp-., are not divisible by p. Among
the first 25 prime numbers < 100 only three are irregular: 37, 59, and 67.
We still do not know today whether there are infinitely many regular prime
numbers.

The connection with Fcnnal's lasl theorem has al last become obsolete.
Following a surprising discovery by the mathemaiician GtkH,\RO FREY, who
established a link with the 1heory of elliptic rnrves, it was KMYNI-."IHRIBET,
who munagcd to reduce Fermat's statement to another. much more important
conjei.:ture, the Taniyama-Shimura-Weil Conjecture. This was proved in
sufficient generality in 1994 by ANI)R/..W Wu.r.-s, after many years of work, and
with a helping hand from R1c11.- RD T@rUJR. See (144].

Tlle regular and irregular prime numhers do however cominuc to be
important.

Exercise I. How many intt:gral ideals a are there with the given norm Jl(a) = n'!

Eurrlsc 2. Show that the quadratk fields with discriminant 5. 8, 11, - 3, - 4.-7,
-8, - 11 have class number .

Exercise 3. Show that in every ideal class of an algebraic number field K of degree n,
there exists an integrnl ideal a such th111
w4 —
Ty < — (=)l

Hint: Using exercise: 3. §5. proceed a.€in the proof of (6.3).

Ext!rdst! 4. Show that the absulull.; ,.<1\u<:: ol the discriminant IdK | is > 1 for c,..ery
algebraic number field K "I- Q  (Minkow<pki's theorem on the discriminant. see
chap. 1. (2.17)).

Exercise 5. Show that the abwlulc value of the tiiscriminant IdKI tends to oo with
1he degree n of the field.

Exercise 6. Let a be an imegral ideal of K ;md a"'= \a). Show lhala hecomcsa
principal ideal in lhe field = K ("ii). in lhe sense 1h:u ao,. = (a)

Exercise 7. Show that, for every number field K. there exisf€ a finite extension L
such that every ideal of K bcrnmces u principal ideal.
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§7. Dirichlet's Unit Theorem

After considering the ideal class group C!K, we now turn to the second
main problem posed by the ring ok of integers of an algebraic number
field K, the group of units oK. It comains the finite group u,(K) of the
roots of unity that lie in K, but in general is not itself finite. Its size is in
fact determined by the number r of real embeddings p: K - R and the
numbers of pairsa. a : K » C of complex conjugate embeddings. In order
to describe the group, we use the diagram which was set up in §5:

K* @ Koo N, IR}+
| N | T
Q* . JR*@ IR

In the upper part of the diagram we consider the subgroups
ok = {F E ok | nkigE)=%13, the group of units,

s={yEKi_l ng) =213, the "nonn-onc surface",
H = {x E[QR]F| Tr(x) =Of, the "trace-zero hyperplane".
We obtain the homomorphisms
ok -1+se H
and the composite A := £0 j: 0K » H. The image will be denoted by
r = A(K) @ If,
and we obtain the
(7.1) Proposition. The sequence
[E 1o B (K)=--m- +o0Ke r _..0
1s exact.
Proof: We have to show that 11(K) is the kernel of A. Fort; E ;I(K) and
r: K » C any embedding, we find log Ir t; | = log 1 = 0, so that certainly

11(K) € ker(A). Conversely, letf E oK be an element in the kernel, so
that A(1:) = t(iF) = 0. This means that lul = 1 for each embedding





40 Chapter 1. Algebraic Inregers

r K -+ C, so that }t' = (re) lies in a bounded domain of the IR-
vector space Kp., On the other hand. j£ is a point of the lattice joK of k3,
(see (5.2)). Therefore the kernel of A can contain only a finite number of
elements, and thus, being a finite group, contains only roots of unity in K*.
m)

Given this proposition, it remains to determine the group I'. For this, we
need the following

(7.2) Lemma. Up to multiplication by units there a.re only finitely many
elements aE ok of given norm NKi-::;,(a) = a.

Proof: Let a E Z, a > I In every one of the finitely many cosets of
DK /aoK there exists, up to muhiplication by units. al most one element a
such that IN(a)l = INK11J(a)l =a. For if fi =a+ay.y Eok, is another
one, then

/?3 N(fi)
=1+ @fi-y EOK

because N(/J)//3 E CJK, and by the same token @ =I% N:QYE ok,
i.e., fJ is associated to a. Therefore, up to multiplication by units, there
arcatmost(oK :aoK)elementsofnormza. D

(7.3) Theorem. The group I is a complete lattice in the (r + s - 1)-
dimensional vector space H, and is therefore isomorphic to Z/ .-

Proof: We first show that I' = is a lattice in H, ie., a discrete
subgroup. The mapping A: 0K -+ Il by restricting the mapping

ke TR,

and it sufllces to show that, for any ¢ > 0, the bounded domain {(xr) E
fir RIIX,1 Sc} contains only finitely many points of I' = Since

C((zr)) = (log lzrl), the preimage of this domain with respect is the
bounded domain

e |z = e

{(:,\51?[(‘“

It contains only finitely many clements of the sel JOK because this is a





subset of the lattice joK in [ flr CJ+ (see (5.2)). Therefore I isa lattice.
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We now show that I is a complete lattice in //. This is the principal
claim of the theorem. We apply the criterion (4.3). So we have to find a
bounded set M ,;; I such that

= LI(M+y).

yE/

We construct !his sel through ils preimage with respect 10 lhe surjective
homomorphism
f:SeN.

More precisely, we will construct a bounded set Tin the nonn-onc surface S,
the multiplicath-e translaLions T jr-, r, E o;:, of which cover J.11 of S:

S= LJ Tje
HOK

For x = (xr) E, it will follow that the absolute values IXrI are bounded
from above and also away from zero, because TT, IXrl = I. Thus M = f(T)
will also be bounded. We choose real numbers <'r > 0, for r E Hom(K, C),
satisfyingc, = g- and
. X 245 -
C=Tler > (”) Vel
and we consider the set
X= j(c,)E K,lla,1 <c,j
Furan arhilrary poinl y = (y,) E S. it follows that
Xy =I(,,) EK, 11,,1< ;}
where(.'€ = cr IYr 1, and one has ce¢ = er and nr ('€= nrcr — C because
TTrivti= IN(y)l = I. Then, by (5.3), there is a point

ja=(rn)eXy, nsok, aj-o.

Now, according lo lemma (7.2), we may pick a system at, .. ,a,., E ok,
a, =fa 0, in such a way that every a E ok with O < INK1Q(a)l .S C is
associated to one of these numhers. The set

N
T=SnLJX(jad-*
il
then has the required property: since X is bounded, so is X(ja;)-* and
therefore also T, and we have
S= L T1:.

e
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In fact, if y € S, we find by the above an a E ok, a ,fi. 0, such that
ja e Xy-! so Jo= xy-* for some x EX. Since

| Nk gta)] = |N{.\y"l\ =|Nw| <[lee =C,
a is associated 10 some «;, a, — i-a. ¢ E oK. Consequently
y = xja! = xj(a;-'e).

Since y,j1:: ES. one finds x}a/* ES NX}a, €'s; r, and thus ye Tje, O

From proposition (7.1) and theorem (7.3) we immedi:ilcly deduce Dirich-
let's unit theorem in its classical form.

(7.4) Theorem. The group of units tJ/(* of o k is the dirccl producl of the finirc
cyclicgroupdi(K) and .i free abc/ian group of rank r +s - 1.

In other words: there exist units els. ,iz, t = ,. * s- I, called
fundamental units. such that any other unit  can be wrinen uniquely as a
product " '

E=Ley g

wilh a root of umty< and into;;:gers V,.

Proof: In Ihe exact sequence
1 pwe 0K @ r—t0

I' is a free abclian group of rank r = r+s- 1 by (7.3). Let vi. ., v, he
a Z+basis OI' I, lete,. e, e o}i"he prcim.iges of the v;, and let A S;: o;.,
be the subgroup generated hy the £, Then A Is mapped isomorphically onto
r by I,, i.e., one has p(K) n A= 11) and therefore oK = p,(K) x A. [l

Identifying [ NrR]c =Rrt-i (see 95, p.33), H becomes a subspace OF
the euclidean space Rr '* .and 1hus ilself .a euclidean space. We may therefore
speak of 1he volume of the fundamental mesh vol().(0K)) OI Lhe unit Litticc
I' = A(0©) € IIl. and will now compute it. Let #1,. ., E.l =r +s- I
be a system of fond.imcnta! units and <.P the fundamemal mesh o( the unit
lanice >..(oK), spanned by the vectors >..(F1).. , i(er) E // . The vector

(1, D ERm<
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is obviously orthogonal to H and has length 1. The !-dimensional volume
of @) therefore equals Ihe (t + !)-dimensional volume of the parallelepiped
spanned by Ao, A(ci)...., A(c,) in RI+L. But this has volume
) =) )-G))
*det ( : :

Aol+l AI+ICE1) AL+1\F1)
Adding all rowstoa fixed one, say the i-th row, this row has only zeroes, except
for the first emry, which equals ,Jr+s. We therefore get the

(7.5) Proposition. The volume of the fundamental mesh of the unit lat- tice

Al inH i J—
(0®)inH is vol{ L{eg)) = Vr T3 R,

where R is the absolute \'a/ue of the detenninant oLm arbitrary minor of rank
t=r +s- | of the following matrix:

This absolute value R is called /he regulator of the field K.

The importance of the regulator will only be demonstrated later (see
chap. VII, 85).

Exercise 1. Let D > 1 be a s4uarefree integer and d the discriminant of the real
4uadratic number field K = Q(,/D)  82. exercise 4). Let x1v1 be the uniduely
determined rational integer solution equation

X2 . dy@= -4,
or - in case this equation has no rational integer solutions - of the e4uation
r2 -dy? =4.
for which x,.y; > 0 are as small as possible. Then
o= 4t di

is a fundamenhil unit of K. (The pair of edualions ¢ - dy? = +4 is called Pell's
equation.)

Exercise 2. Check the following tah!e of fundamental unit€ «, for Q(,/D):

D n

a1+ V2 24V3 (14572 54276 B+347 34410






44 Chapter 1. Algebraic Integers

Hint: Chtx:k one hy one fory = 1,2, 3, whether one of the numherstly*:i::4 isa
s4.uare x2. By 1hc unit Thcorem this is bound !0 happen, with 1he plus sign. However,
for fijed y, let preference be given 10 the minus sign. Then 1lhc tir.;1case, in this

order. where dyf ,=. 4 =.(;,gives lhe fundamental unite, = (x, +y,Jd)/2.

Exercise 3. The I.fa.Ute of HastinJ(s (Ocloher 14. 1(66)

"Thi.: men of Harold €tood well together, as their woni was. and fonned thirt..:en
sduares, wilh a like number of men in every square thereof. and woe to 1hc hardy
Norman who ventured to enter their redoubts: for u single blow of u Saxon war-
h.itched would break his lance and cut through his coat of mail.. When Haro!d
threw himself into the fray the Sa,;ons were one mighty square of men. shouting the
battle-cries, -ut €. 'Olicrosl;e r, 'Godemile!"" IFiclitious historical text, following
e.€-..cnlially problem no. 129 in: H.E. Dundem:y, Amusmu'lltf in Matlu:matio, !9!7
(Dover reprinL., 1958 and 1970).)

Question. How many troops doe€p this suggest Harold |1 had a! 1he baUle of Ha€lings?

Exercise 4. Lt:1( be a primitive p-th of unity, p an odd prime number. Show
that Z[i:I- = (OZ(( +C*}*. Show =(x={*(1+("10st <5nEZ),
if p=5.

Exercise S. Lel ( be a primitive m-th root of unity, m €].Show Lhat Ihe numbers
©  for (k,m) =1 are units in the ring of integers or the field Q({). Thesubgroup
of the grour of uniL'l they generate i,; called the group of cyclotumic units.

Exercise 6. Let K be a totally real number field, i.e., X = Hom(K.C) = Hom(K.R).

and lei T be 11 proper noneJiJply .,uhscl of X. Then there exisls a uni,r , $3lisfying
0<re<| forre T.and H > | for r rf;T.

Hint: Apply Minkowsld.:r.lank:c point theorem to the unil I:micc in 1racc-:t.Cro spate.

§8. Extensions of Dedekind Domains

Having studied the ideal class group and the group of units of the ring ok
of integers of a number tlcld K, we now propose to make a first survey of
the set of prime ideals of ok. They are oflen referred to a€ the prime ideals
of K - an imprecise manner of speaking which is, however. not likely to
cause any misunderstanding.

Every prime ideal ):If- 0 of ok contains a rational prime number p (see
§3. p.17) and is therefore a divisor of the ideal JJ0k. Hence the question
arises as to how a prirne number p factors into prime ideals of Ihe ring ok.
We treat this problem in a more general context, staning from an arbitrary

o





integral closure O of 0 in a finite extension of its field of fractions.
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(8.1) Proposition. Leto be a Dedekind domain with field of fractions K, lei
LI K be a finite extension of K and O tiJe integral clomre of o in L. Then0
i.€ again a Dedekind domain.

Proof: Being the integral closure of o, O is integrally closed. The fact that
the nonzero prime ideals \I) of O are maximal is proved similarly as in the
case 0 = Z (see (3.1)): p = \l) n 0 is a nonzero prime ideal of o. Thus

the integral domain C'J/€p is an extension of the field o/p, and therefore has
itself to be a field. because if it were not. then it would admit a nonzero
prime ideal whose intersection with o/p would again be a nonzero prime
ideal in o/p. It remains to show that O is noetherian. In the case that is of
chief interest to us, namely. if LI K is a separable extension. the proof is
very easy. Let a1, , o.n be a basis of LI K contained in (), of discriminant
d = d(a an), Then d == 0 by (28), and (2.9) tells us that O is
contained in the linitely generated a-module oa/d + ¢+ o0a,/d. Every

ideal of O is also contained in this finitely generated c-module, and therefore
is itself an a-module of finite type, hence a fortiori a finitely generated C'J-
module. This shows that O is noetherian, provided LI K is separable. We
ask the reader's permission to content ourselves for the time being with
this case. We shall come hack to the general case on a more convenient
occasion. In fact, we shall give the proof in a more general framework
in 912 (see (12.8)). [m]

For a prime ideal p of o one always has
pO,<0.

In fact, letss Ep"- p2 (p == 0), so that no="pa with pf a, hence p+a = o.
Writing 1 =h +s. withh Epands E a we finds f. pandsp £ pa =rro.
If one had pO = 0, then it would follow that SO = spO <; rrO, so that
s =.rrx for some x E On K =o, ie, s E p, a contradiction.

A prime ideal p 0 of the ring o decomJXlses in (3 in a unique way into
a product of prime ideals,

po o< .
Instead of p() we will often write simply p. The prime ideals '1]; occurring in
the decomposition are precisely those prime ideals ,,P of O which lie over p
in the sense that one has the relation
p =\l)no.
This we also denote for short by \I)Ip, and we call € a prime divisor of p.
The exponent e; is called the ramification index, and the degree of the field

extension
Fo= O oy
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is called the inertia degree of ip; over p. If Ihc extension LI K is separable,
the numbers ci, j; and the degree n = LL K] are connected by the
following law.

(8.2) Proposition. Let | IK be separable. Then we have the fundamental
identity

Leif;=n.

i=l
Proof: The proof is based on the Chinese remainder theorem

0/po ;a ()ore;.

0/p0O and O/Q? are vector spaces over the field k = o/p, and it suffices
to show that

dim,..(0ip0) =u and dim.,(0/11("} = e;f;

In order to prove the first identity, let w1, .... rv,, e O be representatives
of a basis W1, ... , Wm of O/pO over ic (we have seen in the proof of (8.1)
that O s a finitely generaled a-module, so certainly dim@-+(O/pO) < 00).
his sufficiem to show 1halwi, ... , om is a basis of LIK, Assume the

wi1-...- wmare linearly dependent over K. and hem.:e also over o. Then
there are elements a1=...,amEo nm all zero such that

a4 - gty = 0,

Consider Ihe ideal a = (a1..... «m) of o and find a E a ' sm.h that
a(/. a-*p, hence aa %. p. Then the clemems aa;.. .Odm liein o, but not
all belong 10 p. The congruence

aaiw1+ -+ aamwm: O mod p

thus gives us a linear dependence among the o,i1..., aim over k, a contrn-
diction. The w1, ...-wm are therefore linearly independent over K.

In order to show that the w; arc a basis of LIK, we consider the o-
modulesM = ow; + ®** + ow;;and N = O/M. Since (3 = M + pO,
we have pN = N. As LIK isseparable, 0. and hence also N, arc finitely
generated o-modules (see p.45). If a1..... asis a system of gcneralors
of N. then

al=La,jaj fora.jep.
J
Let A be the matrix (aij) - I, where | is the unit matrix of ranks, and let
8 be Ihc adjoint matrix of A. whose entries arc the minors of rank (s- 1)





§8. Extensions of Dedekind Domains 47

of A. Then one has A(cr, ... ,a_f = 0 and BA= di, with d = det(A).
(see (2.3)), Hence

0= BA@a a.) = (dct1, ... da.;

and therefore dN = 0, i.e.,, dO =} M = ocvi + -+ + owiz. We have
d =1=0, because expanding the determinant d = det((a;;) - /) we findd =
(-1} mod p because all E p. It follows that L =dL = Kwl + + Kcvm.
cvi, ., Wusis therefore indeed a basis of LI K.

In order to prove the second identity, let us consider the descending chain

O/P 2P 22

of K-vector spaces. The successive quotients q:3/;q:3;*+ in this chain are isomorphic
to Ofq:3;, for if @ Eq:3)" "-q:3;+, then the homomorphism

q3)/g:3;+, ai-

-+ aa,

has kernel €' and is surjective because 0' is the ged of g:3;+' and
(a)=aO so that q:3/ = cr:0 + q:3;+1. Since .f; = [0/ : K], we obtain
dim,;(q:3/ /q:3;"+ = t;- and therefore

i, (/T = e f, o

Suppose now that the separable extension LIK is given by a primitive
elementO E O with minimal polynomial
p(XJ E o[X].

so that L = K (0). We may then deduce a result about the nature of the
decomposition of p in O which, albeit not complete, does show characteristic
phenomena and a striking simplicity. It is incomplete in that a finite number
of prime ideals are excluded; only those relatively prime to the conductor of
the ring of0] can be considered. This conductor is defined to he the biggest
ideal J of O which is contained in 0(O]. In other words

F=lec|e0 colbl}.
Since O is a finitely generated o-module (see proof of (8.1)), one has -8 -1- 0.
(8.3) Proposition. Letp bea prime ideal of o which is relatively prime to the
conductor:S ofo[0], and let

BEXY = BtX) B (X
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be rhe focrorization ofrhe pnlynomfol f,(X) = p(X) mod pinto irreduc:ibles
'p;(X) = Pi(X) mod p overthe residue class fieldo/p, with all p,(X) € o[X]

monic. Then
P =pOQ 4 pC, F =1 T

are rhe different prime idea/.s of O :1bove p. The inertia degree Ji of@; i.@the
degree of"p;(X), and one ha. €

>yl

p=
Proof: WritingO' = oLOJand O = o/p, we have a canonical isomorphism
0/pO ;; O'/p0O" 3; o(XI/(P(X))-
The tirs1 isomorphism follows from Ihe relative 11rimalily pO + 3" =0. As
Q s; O', it follows that O = pO+0", i.e., the homomorphism O'--,.0/pO
is surjeclive. It has kernel pO n O', which equals pCJ'. Since (p. no) = I.
it follow, that pOn O' € (p+.\')(pO n 0) € pO".
The second isomorphism is deduced from the surjective homomorphism
c,(XJ-  ofXil(p(X))
ilskernel is the ideal generated by p and p(X), and in view of O' =0(8) =
o(Xj/(p(X)), weha,c O'/pO" ;; ofXl/(p(X)).
Sim:e "p(X) = ne= )"+, rhe Chinese remainder lheorem linally gives
1hc isomorphism

o[XJ/(iitX)) ;; E!o[XI/(p,(X))"
i=l

This shows that the prime ideals of the ring R = OIX]/('p(X)) are the
principal ideals (/J;) generated by the 'p;(X) mIXI'p(X), fori =1, .,
that the degree IR/Cji,): B] equals the degree of the polynomial 'p,(X), and
thal "
(ol =<i)= No,,J".
i=l

In view of lhc isomorphism OfXl/("p(X)) € OfpO, /(X) s /(0). the
same situation holds in 1hc ring O =0 j'pfJ. Thus lhc prime ideals €; of
O correspond to the prime idedls ("p,-), and they are lhe prindpal ideals
generated by the p; (0) moJ ))o. The degree [C5/0, . Bl is the degree of the
polynomial "p;(X), and we have (0) = I :1i_p;'. Now let q.:3; = pO+p;(0)()
he thi.: preimagc of I,p, with respt:Cl to the canonical homomorphism

O-0;po.
Then 1+, for i = 1. ., r, varies over the prime ideals of O above %
/1=1 O/é o/p) is the degree of the JX)lynomial /J;(X). Furthcnnore 13?

is the preimage of@? (heOtuse e; = #I$" IVE N3}), and pO 2 ]~ -1.-pP?

-0 that poln;..,.,lJ? and therefore pO =n;-=.11:" because Ls/;=1
D
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The prime ideal pis said to split completely (or to be totally split) in L,
if in the decomposition

P=q3@1 39",
onehasr =n =1IL: KJ, sothate; = f; =1 foralli = I. ,r. pis
called nonsplit, or indecomposed, if r = 1, i.e., if there is only a single

prime ideal of L over p. From the fundamental identity
r.e fi&n
i=1

we now understand the name of inertia degree: the smaller this degree is,
the more the ideal p will be tend to factor into different prime ideals.

The prime ideal g, in the decomposition p = n;-=1 qJ;" is called
unramified over O (or over K) if el = | and if the residue class field
extension 0/q:lilo/p is separable. If not, it is called ramified, and totally
ramified if furthennore Ji = 1. The prime ideal p is called unramified if
all q}; are unramified, otherwise it is called ramified. The extension LIK
itself is called unramified if all prime ideals p of K are unramilied in L

The case where a prime ideal p of K is ramified in L is an exceptional
phenomenon. In fact, we have the

(8.4) Proposition. 1f L K is separable, then there,ire only finitely many prime
ideals of K which are ramified in L.

Proof: Let O E O be a primitive element for L, ie. L = K(0), and let
p(X) E o[XJ be its minimal polynomial. Let

d=d(10. ,onl= ;- 0y E0

be the discriminant of p(X) (see §2, p. 11). Then every prime ideal p of K
which is relatively prime to d and to the conductor J of o[0J is unramified.
In fact, by (8.3), the ramincalion indices ei equal | as soon as they are equal
to | in the factorization of "p(X) = p(X) mod pin o_/p, so certainly if "p(X)
has no multiple roots. But this is the case since the discriminant d =d mIXI p
of p(X) is nonzero. The residue class field extensions 0/q};lo/p are
generated by iJ =fJ mod @i and therefore separable. Hence p is unramilicd.
0

The precise description of Ihe ramified prime ideals is given by the
discriminant of O1o. Itis defined to be the ideal iJ of o which is generated by
the discriminants d(w1l, , wn) of all bases wl, .wn of LIK contained
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in 0. We will show in chapter Ill, *2 that the prime divisors of U are exactly
the prime ideals which ramify in L.

Example: The law of decomposition of prime numbers /J in a quadratic
number field Q(,JQ) is intimately related to Gauss's famous quadratic
reciprocity law. The latter concerns the problem of integer solutions of the
equation

x?+hy=a, (ahEZ).
the simplest among the nontrivial diophantinc equations. The theory of this
equation reduces immediately to the case where b is an odd prime number
p and (a,p) = | (exercise 6). Let us assume this for the sequel. We are
then facing the question as to whether a is a quadratic residue mod p.
i.e., whether the congruence

X2 =a mod p
does or docs not have a solution. In other words. we want to know if

the equation _f* = ii, for a given element & = a mexl p e F;,, admits
a solution in the field FI' or not. For this one intrcxluces the Legendre

symboJ (%), which, for every rational number a relatively prime top, is

*
defined to be (_ =1 or-1, according as x* == a mod p has or docs ot

have a solution. This symbol is multiplicative,

(©)0(0)(%)

This is because the group IF;, is cyclic of order p-1 and the subgroup IF;,2 of
squares has index 2, ie, Fii;F;,? @ Z/22. Since(@)= I<===;, a & 1<)

p(a): a - modp.

one also has

In the case of squarefree a, the Legendre symbol (%) bears the following
relation with prime factorization. ( ) =1 signifies that

x?- a-= (x - ii)(x +a) mod p
forsome a E 2. The conductor of 2/€p3} in the ring of inicgers of Q( ./a) is
a divisor of 2 (see S 2, exercise 4). We may therefore apply proposition (8.3)
and obtain the

(8.5) Proposition. For squarefreea and (p, la) = I, welwvctheequivalence

(@)=I ¢ piswalyspiitingcio).






"18. Extensions of I.)cdckind Domains 51

For the Legendre symbol, one has the following remarkable law, which
like none other has left its mark on the development of algebraic number
theory.

(8.6) Theorem (Gauss's Reciprocity Law). For two di.@tinct odd prime
numbers f <md p, the following identity holds:
1

( : I.- Y,
P

One also has the two "supplementary theorems"

PO =cvlet. p(2) = (1)26C..

Proof: (7f") = (-1)9 mod p implies(€)=(-1)€ since pf 2.

In order to determine (T,), we work in the ring Zf il of gaussian integers.
Since (I +i)? = 2i,we find

i =+ (0 +03) T =42
and since (I +i)t = 1+i" mod pand (fi) =29 mod p, it follows that
2 ) (1) _ 1
({ Y )( il - = = 14i(2)~1Y? - mad p.
From this, an easy computation yields
([)) =(-1)""4 modp, resp. () — (-Dt¥ mod p,

if E;_l is even, resp. odd. Sinceg =p. 1'0 = E;_j'é,

deduce (fi)=
In order to prove the first formula, we work in the ring?.[(], where ( is
a primitive £-th root of unity. We consider the Gauss sum

and show that
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For this, let a and h vary over the group (Z/C£)*, put ¢ = ah ' and deduce

from the identity (7) = (0) that
= 3 —a ¢ -1 [
()= 5 - () = 2 )
Lh(-<)+1:(@).
A /£
Now Le(?) =0, as one secs by multiplying Ihe sum with a symbol (f) =

-1, and putting@= ,,--* gives Lhri>(<--1) :0 +@2+. teort =l
from which we indeed find that

(=EP)r'=minn- ee.

This, together with the congruence (|) = t¢ mod p and the identity
(:t) = (-)r_,.i, implies
= r(rz)o = r(—l)QSi (*)mOd p.

On the other hand one has
D = ()= (B
so that
1o & r-ts-'(%)mod »

Multiplying by r and dividing by +f yields the claim. a

We have proved Gauss's reciprocity law by a rather contrived calculalion.
In § 10, however, we will reL:ugni:u: the Iruc reason why it hulds i11 the law
of decomposition of primes in the field of £-th roots of unity. The
Gauss sums do have a higher theoretical though, as will become
apparenl later (see VU, S2 and S6).

Exercise I. If 0. and. b arc ideals of o, then one has et = et 0 n 0 and
alb{===} uOlbO

Exercise 2. For ideal 21 of 0. there exists a H £ O such th<lt the
conductor ;S-= luE olAJ} is prime to 21 and such that L = K (A).

Exercise 3. If a prime ideal p of K is totally split in two sep<1rahle extensions LI K
<1ind L'IK, then it is also totally split in the composite extension.
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Exercise 4, A prime ideal p of K is totally split in the separable extension LIK if
and only if it is totally split in the Galois closure NIK of I, IK.

Exercise 5. Fora number field K the statement of proposition com.:.cming the
prime decomposition in the extension K(0) holds for all prime pf(O:O[RI).
Exercise 6. Given a positive integer h > 1, an a relatively prime lohis a
quadratic residue mod h if and only if itisa residue modulo each prime
divisor pof h, and if a= | mod 4 when 41h. resp. a= | mod 8 when Slh.
Exercise 7. Let (a,p) =land av=r,, mod p, v = |, ©-1,0<r, < p. T@en
ther,, give a permutation tc of the numhers I. .., p- I. Show that sgntc = (*//).

Exercise 8. Let iin =@»*where r = 1 \ [5
th Fibon,it:ci number). If pis a prime number cf. 2,

ap = (J) mod p.

) A5 (a, is the 11-

then one has

Exercise 9. Study the Legendre symbol ( %) as a function of p > 3. Show that the
property of 3 being a quadratic residue or nonresidue mod p depends only on the
class of pmod 12.

Exercise 10. Show that the numher of solutions of x> =a mod p equals | + (fJ).

Exercise 11. Show that the number of solutions of the congruence ax? + hx + ¢ =
2
0 mod p. where (a,p} = 1,equals I+ (/) —g4aC).

§9. Hilbert's Ramification Theory

The question of prime decomposition in a finite extension LI K takes
a particularly interesting and important tum once we assume LI K to bea
Galois extension. The prime ideals arc then subject to the action of the Galois
group

G @ G(LIK).

The "ramification theory" that arises from this assumption has been intro-
duced into number theory by D,ivw HILBERT (1862-1943). Given a in the
ring CJ of integral elements of L, the conjugate aa, for every a E G. also
belongs to CJ, i.e., G acts on 0. If '3 is a prime ideal of CJ above p, then
so is a,P. for each a E G, because





a,Pno= a(P no)=ap=p.

The ideals a,P, for a E G, are called the prime ideals conjugate to ,P.
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(9.1) Proposition. The Galois group G acts transitively on the set of all prime

ideals*,PofO lying above p, i.e., the.€pe prime ideals are al/ conjugates of each
other.

Proof: Let 13 and >.37 be two prime ideals above p. Assume >.JI' ::/= a\_}] for
any a E G. By the Chinese remainder theorem there exists x E Osuch that
xa==Omo<IW' and x==Imoda$ forall UEG.

Then the nonn NL1K(X) = nr2ei ax belongs to€/ n O = p, On the other
hand, x ¢ a€ forany a E G, hence ax¢ € forany a E G. Consequently

n,-cG ax¢ €»no= p, a contradiction.

(9.2) Definition. If,P is a prime ideal of O. then the subgroup
G'Jl@{acGia'lu@'P)
is ca/led the decomposition group of$ over K. The fixed field
Z'l-I={xELlax=x forallaEG,,p)
is called the decomposition field of',}} over K.

The decomposition group encodes in group-theoretic language the number
of different prime ideals into which a prime ideal p of 0 decomposes In CJ.
For if g3 is one of them and a varies over a system of representatives
of the cosets in G/Gr+i, then aq:3 varies over the different prime ideals above
p, each one occurring precisely once, i.e., their number equals the index (G:
G'l-J). In particular, one has

G, = 1 gum=p Z13 =L (=== pis totally split,

Gl-1=G {unn} Z<N =K €  pis nonsplit.
The decomposition group of a prime ideal a 3 conjugate to g3 is the
t:0il_jugale- .-;ubgmup

Ga'l-) = a G,:pa-*
In fact, for r E G, one has the equivalences
t"EGal-) {: ralJJ=ald) {:

3+ alalu=10

= o't cln &= reolno’

Remark: The decomposition group regulates the prime decomposition also
in the case of a non-Galois extension. For subgroups U and V of a group G,
consider the equivalence relation in G defined by

a ~r {zu}a= wov foruEV, vEV
T
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The corresponding equivalence classes

UaV=\uavluEU, VvEV}
are called the double cosets of G modd U, V. The set of these double cosets,
which form a partition of G, is denoted U\G/V.

Now !cl LI K be an arbitrary separable extension, and embed it inlo a
Galois extension NIK with Galois group G. In G, consider the subgroup

H = G(NIL). Let p be a prime ideal of Kand Pp the set of prime ideals
of L above p. If 11 is a prime ideal of N above p, then the rule

H\G/G,v---+ Pp, HaG,v i-----+ allnL.
gives a well-defined bijection. The proof is left to the reader.

In the Galois case, the inertia degrees f1, ., _t;. and the ramification
indicese1, . .,er inthe prime decomposition
p=11¢' -11¢'
of a prime ideal p of K are both independent of i.
fiz= = f=f a=- 8. = u

In fact, writing 11 = 11;, we find 11; = a;11 for suitable a; e G, and the
isomorphism a; : () -+ () induces an isomorphism

Ol/a;11, a mod lli—-+ aia mod aill,
so that
J, ~ [ 0/a,13): o/p] ~ [ 0/13): olp]. ; ~ I
Furthermore, since a; (E) = pO, we deduce fr_om
33P0 ™ a,(133")la,(pO) = (a,!J)J"IpO

the equality of thee;, i = I, r. Thus the prime decomposition ofp in CJ
takes on the following simple fonn in the Galois case:
p~(HallJy,

where a varies over a system of representatives of G /Gr;u. The decomposi-
tion field Z,,p of 11 over K has the following significance for the decompo-
sition of p and the invariants e and f.

(9.3) Proposition. Let11z = 11n Z'+l be the prime ideal of zti below ¢].
Then we have:

(i) 11zisnonsplitinL, i.e., qJ is the only prime ideal ofl abovellz-
(i) 1J over z<J has ramification index e and inertia degree f.
(iii) The ramification index and the inertia degree of111. over K both equal 1.
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Proof: (i) Since G(L1Z,:p) = G<,p, the prime ideals above 'lJz are the a'l],
fora E G(L1Z13), and they are all equal 10 .

(ii) Since in Lhe Galois case, ramification indices and inertia degrees are
independent of the prime divisor, the fundamental identity in this case reads

n=e.fr,

wheren =#G,r = (G: G,:p). Weseethereforcthat#G,:ii = [L: Z;p] = ef.
Let e', resp. e", be the ramification index of I'.;) over Z<y, resp. of ']z over K.
Then =q:1€' .. inZ:pand'137 ='l]c' in L, sothat p=gq:L,,., .. ,ie.,
e = One also obviously gets the analogous identity for the inertia
degrees f = f'f"* The fundamental identity for the decomposition of q:Jz
in L then reads [L : Zw] = e'f’, i.e., we have e'f'’ = ef, and therefore

€, re1.,"orel. =]

The ramification index e and the inertia degree f admit a further interesting
group-theoretic interpretation. SinceaO =0 and a'l] = qJ, everya EG'3
induces an automorphism

a:0/q]----+0/'1], amod'I3t ------ ,-aamod'l3.

of the residue class field 0/'13. Putting K(l.p) = 0/-P and K())) = o/p, we
obtain the

(9.4) Proposition. The extension K('l]) IK(p) is nomrnl and ;.1dmits 11 surjective
homomorphism

Gy — Ga (P lxip))

Proof: The inertia degree of -PZ over K equals I, i.., Z<p has the same
residue class field k()) as K with respect to p. Therefore we may, and

do, as;o;unle that Zw = K, ie, Gw = G. Let 0 E (J be a n:-prt:senlalive
of an element O E K(-1}) and /(X), resp. jf(X), the minimal polynomial
of(} over K, resp. of O over K(p). Then O = 0 mod L.p is a zero of the
polynomial _f(X) = /(X) mod p, i.e., ;if(X) divides .f(X). Since LIK is
nonnal, f(X) splits over O into linear factors. Hence .f(X) splits into linear
factors over K('l]), and the same i;0; true of jf(X). In other words, K(V')IK(P)
is anormal extension.

Now let O be a primitive element for the maximal separable subextension
of K(I)Ik(p) and

a c G(KO)I)IKIPI) @ GK(P)IilIK(PI)
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Then aiJ is a root of |f()<) and hence of J(X), i.e., there exists a zero(}'
of f(x) such that 0 = a0 mod qJ O' is a conjugate of O, i.e, 0' =00

for some o & G(LIK). Since 00 = rrO mod >.p, the automorphism o is
mapped by the homomorphism in question to rJ. This proves the surjectivity.

[m]

(9.5) Definition. The kernel /,Il £ G'll of the homomorphism
G@-  GK(I-DIK(p)
is called theinertia group ofqJ over K. The fixed field
T<p={XELlax=x forallaE/,:p}

isca/led the inertia field ofgJ over K.

This inertia field T,p appears in the tower of fields
KCZpCTaCl,
and we have the exact sequence
|~ by — Gy — G (P)lx(p)) — 1.

Its properties arc expressed in the

(9.6) Proposition. The extension Tq,|Zq, i.€ normal, and one ha.€
G(TplZp) = Gx(Plxp)) . GL|Ty) = Iy,
If the residue field extension K(q]) IK (p) is separable, then one has
#lg=[L:Tol=¢, (Go:lp)=[Tp:Zyl=f
In this case one finds for the prime ide;li*-PT of T;p below q3:
(i) TI,eramification index ofq] over'-P-r is e and the inertia degree is I.
(i) The ramification index of!,pr over!,pz i.€ I, and the inertia degree i.€ f.

Proof: The first two claims follow from the identity #G,+l = e.f. So we only
have to show statements (i) and (ii). Using the fundamental identity, they all
follow from K(-Pr) = K(#). As the inertia group f.:p of€ over K isalso the
inertia group of qJ over Tq,, it follows from an application of proposition (9.4)
to the extension LIT,:p that G(K(!,p)IK('f.Ir)) = 1, hence K(,pr) = K(!,p). O
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In the diagram
K

we have indicated the ramification indices of the individual tield extensions
on top, and the inertia degrees on the bottom. In the special case where the
residue field extension K(qJ)IK(p) is separable we find

1€, =1 =3T11= 1|

In this case the Galois group G(K(q,})IK(p)) € G,,p of the residue class field
extension may be viewed as a subgroup of G = G(LIK).

} p is unramiiicd in L.

Hilbert's ramification theory, with its various refinements and generaliza-
tions, belongs naturally to the theory of valuations, which we will develop
in the next chapter (see chap. 11, §9).

Exercise 1. If /1K is a Galois extension of algebraic number fields v,ith noncyclic
Galois group, then there are at most finitely many nonsplit prime ideals of K.
Exercise 2. If LIK is a Galois extension of algebraic number fields, and € a prime
ideal which is unrarnitied over/<. (i.e., p= 1Pn K is unramificd in/.), then there is
one and only one automorphism ,p,.p € G(l,IK) such that

ip,_pa=a''mod€¢ forallaEO,
where g = [£{93)  k{p}]. ft is called the Frobenius automorphism. The dcrnmpo-
sition groun G o is eyelic and ip13is a generator of G,1:.1-
Exercise 3. Let LIK bea solvable exdension of prime degree p (not necessarily
Galois). If the unramificd prime ideal p in L has two prime factors ilJ and 11} of
degree 1, then it is already totally split (theorem of F.K.SCHMIDT).
Hint: Use the following result of cal.o1s (sec [75], chap. 11, §3): if G is a transitive
solvable pennutation group of prime degree p, then there is no nontrivial pem1lutation
o E G which fixes two distinct letters.
Exercise 4, Let L IK be a finite (not necessarily Galois) extension of algebraic number
fields and NIK the nonnal closure of LIK. Show that u prime ideal p uf K is totally
splitin L if ,md only if it is totally split in N.
Hint: Use the double cosct decomposition H\G/G13, where G = G(NIK). H =
G(NIL} and G™-P is the decomposition group of a prime ideal€ over p.

§10. Cyclotomic Fields

The concepts and results of the theory as far as it has now been
developed have reached a degree of abstraction which we will now balance
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by something more concrete. We will put the insights of the general theory
to the task and make them more explicil in the example of the n-th
cyclotomic field Qi((), where ( is a primitive n-th root of unity. Among
all number fields, this lield occupies a special, central place. So studying it
does not only furnish a worthwhile example but in fact an essential building
block for the further theory.

It will be our first goal to determine explicitly the ring of integers of the
field Q((). For this we need the

(10.1) Lemma. Let1 be a prime power f* and put A = 1- I;. Then the
principal ideal (A) in the ringo of integer. € ofQ(l;) is 11primc ideal of degree I,
and we /Jave

to= ()7, where d=g(t*) =[Q@):Ql.
Furthennore, the basis I, (, , 1;-10[Q(()IQ has the discriminant

d(Ll;, 1;1tY=4£". s=F"-1(vf-v-1).

Proof: The minimal polynomial of ( over Q is the 11-th cyclotomic poly-
nomial

Top=xTT e xT g

B, (X) = (XY — DX’
Putting X = I, we obtain the identity

=TI (1—&*

But | - (¢ = syy(L- (., for the algebraic integer £ = t--E-F-
1+ (+ =« + (g-l_ If 1( is an integer such that gg' =1 mod then

1 1-((1:)1
=@ =I1+1."e+ +{(g'-i

is integral as well, i.e.. Fg is a unit. Co@sequently £ = e(l - 1,)i'WI, with
the unite= n€F:g, hence £0 = (A)IO(t'l. Since 1Q((): Q] = ip(r), the
fundamental identity (8.2) shows that (A) is a prime ideal of degree 1.

Let ( = (1,. .r1 be the conjugates of (. Then the cyclotomic
polynomial is ¢n(X) = nf,...1(X -(1) and (sec §2, p. 11)

+d(l,(. DO ()@ n 1:(.) @ Ne,md</>;(n)

it =l
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Differentiating the equation
XY = g = X7 1
and substituting t; for X yields
E-nen =g

with the primitive £-th root of unity@= t;.f"-. But NQU)IQG; - 1)= *t,
so that

NQ(OIQ(® - = Nij(0L((@ - 1te-1 = 2£1"
Observing that ( * has norm 1 we obtain
d(Len o 07 = Nyl @) = £€7TEDET S ap
with s = ¢ 1w — v~ 1. o

The ring of integers of 1Q(() is now determined, for arbitrary n, as follows.

(10.2) Proposition. AZ-basis of the ring o of integers ofQ(O is given by
1L,(, --.. (* X withd = tp(n), in other words.

o=Z+Z(+ +zt;d-I=Zi(J.

Proof: We first prove the proposition in the case where n is a pnme
power ev_ Since d(1,(, t'tly = +f, (2.9) gives us

HocElfl <o,
Putting).= | -  lemma (10.1) tells us that o/>.n = ?2.ff2,, so that
0 =2+ Ao, and

Ao+Z[(J=o0.

Multiplying this by A and substituting the result Ao= A +i,Z[t;], we
obtain
Bo+Rlizl=o

Iterating this procedure, we find

A'o+Zr(J=o fora/l t
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Fort = sr.p(C) this implies. in view ofE o = ),._I9ti"lo (sec (10.1)). that
a=o+ Il =to+Lici=2l|

In the general case, letn= €'(*  €¢. Then (; = is a primitive t:;' -th
root of unity, and one has

) =g -G
and Q:((1) ~Q((i-I) NQ((i) = Q. By what we have just seen. for each

i=1,r the elements I,(;6. . - where d; = form an
integral basis ofQ((; )1QJ. Since the discriminants d(l. (;, = i('
are pairwise relatively prime, we conclude successively from that the

elements (/* -2/, with j; = 0. d; - 1, fom1 an integral basis of
Q(OIQ, But each one of these elements is a power of C. Therefore every
a E o may be written as a JX!lynomial a = f(() with coefficients in Z.
Since ( has degree rp(/l) over Q, the degree of the polynomial f(() may be

reduced to r.p(11) - 1. In this way one obtains a representation
a =ao+al( + +arp(nl-ICF (13-
Thus 1,(, , ¢"(n)-1 is indeed an integral basis. [m]

Knowing that zrtl is the ring of imcgcrs of the field Q:(() we are now in
a position to state explicitly the law of decomposition of prime numbers p
into prime ideals of Q(n. It is of the most beautiful simplicity.

(10.3) Proposition. Let11 = TT// pl1, be the prime factorization ofn and, for
every prime number p, let fp be Ihc smallest positive integer such that

pf,,= | mod n/p"p.
Then one has in Q(() the factorization
P = )1 eop o) (M.

where p1, . p,. are di.@tinct prime ideals, ,-1.1 of degree fp-

Proof: Since o = Zf(l, the conductor of Z[(I equals |. and we may





apply proposition (8.3) to any prime number p. As a consequence, every p
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decomposes into prime ideals in exactly the same way as the minimal polynomial
¢,,(X) of ( factors into irreducible polynomials mod p. Ali we have to show
is therefore that

€,(X) @ (P.O¥)- P,(¥))"P"™J mod p,

where py(X), ... , Pr(X) aredistinct irreducible polynomials over of
degree fr,, In order to see this, put n = pvrm. As i, resp. 1Jf, over
primitive roots of unity of order m, resp. p"", the products ¢ir/j vary precisely
over the primitive n-th roots of unity, i.e., one has the decomposition over o:

Du(X) = [(X = &)

Since XP'r - X - Df*: mod p, one has13J = | mod 1J, for any prime
ideal p Ip. In other words,

¢11(x) == NCX —tiy (1 {prB— em(X)1(p";.) mod p.

This implies the congruence
¢n(X) = <pm(xyf(p1) mod p.

Observing that /p is the smallest positive integer such that ph' = 1 mod m,
it is obvious that this congruence reduces us to the case where p 1 n, and
hence ippv1) = I{)(l) = 1.

As the characteristic p of o/p does not divide n, the JX)lynomials X" - |
and nx"-* have no common root in o/p. So X" - | mod p has no
multiple roots. We therefore see that passing lo the quotient O -+ o/p
maps the group pu of n-th roots of unity bijectively onto the group
of n-th roots of unity of o/p. In particular, the primitive n-th root of
unity t modulo p remains a primitive n-th root of The smallest
extension field of Fr ='llI/ p'll containing it is the field because its
multiplicative group IF>,, is cyclic of order pfi,_t. if<pfi, therefore the
field of decomposition of the reduced cyclotomic polynomial

H{1L,,(X) = ,P,,(X) mod p.

Being a divisor of X" - | mod p, this polynomial has no multiple roots,
and if

¢.(X) @ ji.(X)-- p.(X)
is its factorization into irreducibles over Ff!, Ihen every is the minimal
polynomial of a primitive n-th root of unity E Its degree is
therefore fp+ This proves the ptOJX)Sition. [m]





Let us emphasize two special cases of the above law of decomposition:
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(10.4) Corollary. A prime number pis ramified inQ(O ifand only if
n=0Omcxlp.
except in the case where p = 2 = (4,n). A prime number p -1=- 2 i.€ totally
splitin Q(O if and only if
p= 1 modn.

The completeness of these results concerning the integral basis and the
decomposition of primes in the field Q(() will not be matched by our study
of the group of units and the ideal class group. The problems arising in this
context are in fact among the most difficult problems posed by algebraic number
theory. At the same time one encounters here plenty of astonishing laws which
are the subject of a theory which has been developed only recently,
Iwasawa theory.

The law of decomposition (10.3) in the cyclotomic field provides the
proper explanation of Gauss's reciprocity law (8.6). This is based on the
following

It
(10.5) Proposition. Let.e and p be odd prime numbers,£* = (- 1)-v-£, and
( a primitive £-th root of unity. Then one ha.€:

pis totally .@plitin Q(€)  {=> psplitsin Q(() inloaneven
number of prime ideals.

Proof: The little computation in 88, p. 51 has shown us that .€ =, with
r = Lao=(Z/tzl«(@)ta, so that Q(V'F) £ Q((). If pis totally split in
Q(.,/F), say p = pipz2 then some automorphism a of Q(() such that
ap1 = pz transforms the set of all prime ideals lying above p1 bijectively
into the set of prime ideals above p,. Therefore the number of prime ideals
of Q(O above p is even. Now assume conversely that this is the case. Then
the index of the decomposition group Gp, or in other words, the degree
[Zp : QI of the decomposition Held of a prime ideal p of Q(t) over p.
iseven. Since C(Q(()1Q) iscyclic, it follows that Q(,./F) S; Zp. The inertia
degree of pn Zp over Q is | by (9.3), hence also the inertia degree

of pn Q(./F). This implies that pis totally split in Q(./F). ]

From this proposition we obtain the reciprocity law for two cxld prime

numbers .e and p.
(-!) (EP o
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as follows. It suffices to show that
I ”
(=)

In fact. the completely elementary result (':f) = (-1)€@ (sec €8, p.Sl)
then gives

(5)=(5)=(H7(E) = (e

By (85) and (10.5), we know that (f) = 1 if and only if p decomposes
in the field Q({) of £-th root.€ pf unity into an even number of prime ideals.
By (10.3), this number is r =£ y 1, where f is the smallest positive integer

pet f-L
T .

such that pf = J mod i.e, r is even if and only if f is a divisor
of 1'_'1. But this is tantamount to the condition p¢f-1/1 = | mod £. Since
an element in the cyclic group has an order dividing f & 1 if and only if
it belongs to Ff, the last congruence is equivalent to (7) = 1. So we do

have =(1f) as claimed.

Historically, Gauss's reciprocity law marked the beginning of algebraic
number theory. Il was discovered by t,'uu,R, but first proven by GAuss. The
quesl for similar laws concerning higher power re.€idues, i.e., the congruences
x* =a mod p, with n > 2, dominated number theory for a long time.
Since this prohlem required working with then-th cyclotomie field, kummri1's
attempts to solve it led to his seminal discovery of ideal theory. We have
developed the basics of this theory in the preceding sections and tested it
m::cessfully in the example of cyclotomic tlelds. The further development
of this theory has led to a totally comprehensive generalization of Gauss's
reciprocity law, Artin's redprocity law, one of the high points in the history
of number theory, and of compelling chann. This law is the main theorem
of class field theory, which we will develop in chapters IV-VI.

Exercise 1. (Dirichlet's Prime Number_Theorem). For every natural number n there
arc infinitely many prime numbers f'= 1 mod n.

Hint: Assume there are only linitely many. Let P be their product and consider the
JJ-Ih cyclolomic polynomial ¢,11+ Nolall numlxrs for x e=Z, can equal J.
Let pl<Pn(xnP) for suitahle .r. Deduce from this. (Dirichlet's prime
number theorem is valid more for prime number\ pc=a mod n, provided
(an) = 1 Cee VII, (5,14) and VI), §13))
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Exercise 2. For every finile abelian group A there exists a Galois extension LIQ
wilh Galois group G(LIQ) € A

Hint: Ih.e exercise I.

I<".xercise .t Every quadratic number field Q( ./d) is contained in snme cyclotomic
field Q(I;,,). (., a primitive n-th root of unity.

Exercise 4. Describe the quadratic subfield€ of Q({")IQ-. in the case where n is odd.

Exercise 5. Show that Qi
Q({N)IQ forn = 2Y.q

T), Q(.J2), (H/=2) are the quadrntic subfields of

§11. Localization

To “localize” means to form quotients, 1he most familiar r.:ase being the
passage from an integral domain A to ils field of fractions

k={1,jacn nEeA, {oi

More genemlly. choosing instead of A, 10J any nonempty S € A, {01
whir.:h is closed under muhiplicarion. one again oblains a ring struclurc on
the set

ns2 =1, ek | a EA.VEs).

The most important special case of such a multiplicative subset is the
complement S = A,  p of a prime ideal p of A. In thi€ case one writes Ap
instead of As-'-and one calls the ring Ap Ihc localization of A at p. When
dealing with problems that involve a single prime ideal p of A al a lime it is
oflen expedient to replace A by the localization Ap. This procedure forgeli.
everything that has nothing to do with p. and brings oul more clearly all the
propenies cunceming p. For imaance, the mapping

gives a I-l-correspondence between the prime ideals q € p of A and the
prime ideals of Ap. More generally for any multiplicative sCl S. one has the

(11.1) Proposition. The mapping.,;

a—> QS-1 ;ind D€ ONA

arc muwafly inverse I-I-correspondence. €eweell the prime ideal. €q € A'S
of Aalldche primeideals D of AS 1.
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Proof: If € A" S isa prime ideal of A. then

U-- q"c"——'q—l. gE Q. sEd

is a pgigne ideal of As-'. Indeed, in obvious notation, the relation%€ ED,
ie, =Ifa.implies that s"aa' = gss' E g. Therefore aa' E q:_because
s" ¢ g, and hence a or a' belong to g, which shows that € or ¢ belong
to D. Furthermore one has
. q@QnA.

since | =aED NA implies g = as E g, whence a E q because s ¢ q.

Conversely, let Q be an arbitrary prime ideal of As-*. Thenq=D N A
is obviously a prime ideal of A, and one has q £; A™- S. In fact, if q were
to contain ans ES, then we would have | = s «}ED. because+ E As-t
Furthermore one has

For if TE 0, then a= T *s ED N A= g, hence@= a} E qs-. The
mappings q r-+ gs-* and D 1-+ D n A are therefore inverses of each other,
which proves the proposition. (]

Usually S will be the complement of a union LiP"x p over a set X of
prime ideals of A. In this case one writes

A€ \l 1 f.gcA. g Omo<Ipfmpexj

instead of As-1. The prime ideals of A(X) correspond by (11.1) 1-1 to
the prime ideals of A which are contained in LIp.:x P, all the others are
being eliminated when passing from A to A(X). For instance, if X is finite
or omits only finitely many prime ideals of A, then only lhc prime ideals
from X survive in A(X).

In the case that X consists of only one prime ideal 1,1, the ring A(X) is
the localization

A {fl fg EA g, 0mod P}

of A atp. Here we have the

(11.2) Corollary. 1f pisaprimeidealofA, then Ap isalocal ring, i.e., Ap has
aunique maximal ideal. namely mp = pAp. There is a canonical embedding

identifying Ap/mp with the field of fractions of A/i.,. In p<-L.rticular, if p is a
maximal ideal of A, then one has

Alp" € Ap/m; forn 2: 1.
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Proof: Since the ideals of Ap correspond 1-1 to the ideals of A contained
in p, the ideal m11= pAjz1is the unique maximal ideal. Let us consider the
homomorphism

I Alpn-——+ A11/m€, a mod pn i+ a mod m;

Forn =1, f isinjective because p = mpn A. Hence Ap/mpAp becomes the
field of fractions of A/p. Let p be maximal and n 2-. I. Forevery 1. E A™- p
one has pn + sA = A, i.e.,, S =s mIXI p'isa unit in A/pn. For n = 1 this
is clear from the maximality of p, and for n :::: 1 it follows by induction:
A= p l4sA = p=pA =p(pn-l+sA)Z pn+sA = pt +sA = A
Injectivity off: leta EA be such thata Em;, i.e..a= h/s withh E
s ¢ p. Thenas= hE p* sothata.'f=0in A/ptl, and hence ii= Oin
Surjectivity off: let a/s E Ap, a EA, s ¢ p. Then by the alxive, there
exists an a' E A such that a = a's mod pn. Therefore a/s = a' mod pnAp,
i.e., a/s mod m; lies in the image off. ]

In a local ring with maximal ideal m, every element a ¢ m is a unit.
Indeed, since the principal ideal (a) is not contained in any other maximal
ideal, it has to be the whole ring. So we have

A*= A™-m.

The simplest local rings, except for fields, are discrete valuation rings.

(11.3) Definition. A discrete valuation ring i.€ a principal ideal domain o with
a unique maximal ideal p -I- 0.

The maximal ideal is of the fonn p = (rr) = rro, for some prime
element Jr. Since every element not contained in p is a unit, it follows
that, up to associated elements, Jr is the only prime element of  Every
nonzero clement of o may therefore be written as e ;rn, for some € E o*,
and n 2-. 0, More generally, every clement a -I- 0 of the tield of fractions K
may be uniquely written as

a=ETCn, EEO*, nEZ.

The exponent n is called the valuation of a. It is denoted v(a), and it is
obviously characlCrized by the equation

(@)= p<@i

The valuation is a function
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Exlending it to K by the convention v(O) = +XI, a simple calculation shows
Ihat it satisfies the conditions

v(ah) = v(a) + v(h), v(a+b)€ min{v(a),v(h)).

This innocuous looking function gives rise to a theory which €ill occupy all
of the next chapter.

The discrete valuation rings arise as localizations of Dedekind domains.
This is a consequence of the

(11.4) Proposition. If o i.€ a Dedekind domain, and S c:; 0, O} is a multi-
plicative subset, then 0 S-* is also a Dedekind domain.

Proof: Let Q1 be an ideal ofos-land a= QIno. Then 12{ = aS l, because
if :f EqQ,aEoandsES, thenonehasa=-s € Eqno= a,so that
Y = a-+, Eas-L1 Asais finitely generated, so is 21, i.e., 0S-! is noetherian.
It follows from (I1.1) that every prime ideal of 0s-- is maximal, because
this holds in o. Finally, os-Lis integrally dosed, for if x E K satisfies the
equation
xn+@xn-1+- +@=0
s1 sn

with coefficients f e 0s-', then multiplying it with the n-th power
of s =@- .Sn shows that sx is integral over o, whence sx E 0 and
therefore X e os-*. This shows that os-* is a Dedekind domain. O

(11.5) Proposition. Leto be a noetheri,m integral domain. o is a Dedekind
domain if and only ii: for all prime ideals p -1- 0, the loca/i7.ations op arc
discrete valwilion rings.

Proof: If o is a Dedekind domain, then so arc the localizatiom op. The
maximal ideal m = pop is the only nonzero prime ideal of op. Therefore,
choosing any Tc Em *- m? one necessarily finds (;r) = m. and furthennore

mn = (JTn). Thus oy, is a principal ideal domain, and hence a discrete

Leuing p vary over all prime ideals -1- 0 of 0, we find in any case that
o=nop.
H
For if* Enp Op, with a, hE o, then

o={xEoi.rnEho)
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is an ideal which c_ann€pt be conained in any prime ideal of o. In fact, for

any p, we may wnteh = -4 with ¢ E o, s ff. p, so that sa = he, hence

sEa" p.Asaisnotc_onta@€ed inany maximal ideal, it follows that a= o,
hence a= | -aEh o, Le.h Eo

Suppose now that the op are discrete valuation rings. Being principal ideal
domains, they are integrally closed (see §2), soo = np Op is also integrally
dosed. Finally, from (11.1) it follows that every prime ideal p -I- 0 of 0 is
maximal because this is so in op. Therefore 0 is a Dedekind domain. n

For a Dedekind domain o, we have for each prime ideal p -1- 0 the discrete
valuation ring op and the corresponding valuation

Vp i K¥m)- Z
of the field of fractions. The significance of these valuations lies in their
relation to the prime ideal factorization. If x E K™ and

xelTp,
P

is the prime factorization of the principal ideal (x), then, for each p, one has
\Ip = Vp(X).
In fact, for a fixed prime ideal q -1- 0 of o, the first equation above implies
(because pog = oq forp-I-q) that
xoq = (TTp'P)og = q"-log= me@".
0

Hence indeed Vq(X) = Vq, In view of this relation, the valuations vp arc also
called exponential valuations.

The reader should check that the localization of the ring Z at the prime
ideal (p) = pZ isgiven by

(9 = {*|a,h EZ, pfh}.

The maximal ideal pz(r) consists of all fractions a/h  satisfying plh
and the group of units consists of all fractions a/h satisfying p ah. The
valuation associated to Z(p),
Vp:Q )-Z U \ooj,
is called the p-adic valuation of Q. The valuation vp(x) of an clement
x E Q* is given by
vr(x) =v,

where x = p"a/h with integers a,h relatively prime top.
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To end this section, we now want to compare a Dedekind domain o to
the ring

o(X)={{If,gEo, g'¢Omodp forpEX},
where X is a set of prime ideals #- 0 of o which contains almost all
prime ideals of 0. By (11.1), the prime ideals -I- 0 of o(X) are given as
Px = po(X), for p EX, and it is easily checked that o and o(X) have the
same localizations

Op= o(X)px-

We denote by Cl(0), resp. C/(o(X)), the ideal class groups of o, resp.
o(X). They, as well as the groups of units a€ and o(X)*, are related by the
following

(11.6) Proposition. There is a canonical exact . €%quence

: Z.

andonehasK*/o;;

Proof: The first arrow is inclusion and the second one is induced by the
inclusion o(X)* -+ K@, followed by the projections K* -+ K*Jo;. If
a E o(X)* belongs to the kernel, thena E Op for 1- X, and also for p E X
because Op = o(X)px, hence a E np 0@ = (see the argument in the
proof of (I 1.5)). This shows the exactness at o(X)*. The arrow

EB K@Jo;-----+ Cl(0)
pIX
is induced by mapping
EB o modo; tr M prpiopy
pox pix

where vp : K*--+ Z is the exponential valuation of K associated to op, Let
ffip;"X ap mod o; be an element in the kernel, i.e.,

=@ = N
p
for some a E K €. Because of unique prime factorization, this means that
vp@@ = O for p E X, and vp@p) = vu(a) for p (. X. It follows

that a E npcx 0; = o(X)* and a = ap mIXI o€-. This shows exactness
in the middle. The arrow

Cf(0)-—---+ Cf(0(X))
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comes from mapping a i-+ ao(X). The classes of prime ideals p E X
are mapped onto the classes of prime ideals of o(X). Since C/(o(X)) is
generated by these classes, the arrow is surjective. For p ¢ X we have
po(X) = (1), and this means that the kernel consists of the classes of the
ideals TTpex p"r. This, however, is visibly the image of the preceding arrow.
Therefore the whole sequence is exact Finally, the valuation vp : Ke _ .. Z
produces the isomorphism K*/0; ;i Z. [m]

For the ring of integers ok of an algebraic number field K, the proposition
yields the following results. Let S denote a finite set of prime ideals of ok
(not any more a multiplicative subset), and let X be the set of all prime
ideals that do not belong to S. We put

of= ok(x).

The units of this ring are called the S-units, and the group Ctf = CI(of)
the S-class grnup of K.

(11.7) Corollary. For the group K5 = (Oft of S-units of K there i. an
isomorphism
K5 = (k) < T

where r ands are defined as in§ 5, p.30.

Proof: The torsion subgroup of Ks is the group 11(K) of roots of unity
in K. Since Cl(o) is finite, we obtain the following identities from the exact
sequence (11.6) and from (7.4):

rank(Ks) = rank(oK) *+ rank( EB Z) =#s+r +s- 1
pes;

This proves the corollary. [m]

(11.8) Corollary. The S-class group Clk = Cf(ok) is finite.

Exercise 1. Let Abean arbitrary ring, not an integral domain, let M be
an A-module and Sa multiplirntivcly dosed Asuchthat Or/.. S. InM xS
consider the equivalence relation

(m,s) ~ (M"s") {==3 3s"ESsuch that s“(s'm - sm') =0.
Show that the of equivalence classes (m,s) fonm an A-module. and that
M - Ms, an. isa homomorphism. In particular, As is a ring. It is called
the localization A respeel to S.
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Exercise 2. Show that, in the above situation, the prime ideals of As correspond 1-1
to the prime ideals of A which are disjoint from 5. If pc; A <md P.1c;  correspond
in this way. then As/Py- is the localization of A/p with respect to the of S

Exercise 3. Let f : M -+ N bea homomorphism of A-modules. Then the following
conditions are equivalent:

(i) f is injective(surjective).

(i) fu: Mp > N-, is inje<.tivc (surjectivc) for every prime ideal p.

(iii) fm Mm --+ Nm is injective (surjcctivc) for every maximal idea! m.

Exercise 4. Let Sand T be two multiplicative subsets of A, and I'* the image of T
in A.. Then one has Aw € (Adr-

Exercise 5. Let : A ---. B he a homomorphism of rings and S a multiplicatively
closed subset that f(S)c; S*. Then f induces a homomorphism A.j.--)-B.

Exercise 6, Let A he an integral domain. If the localiz11lion A, is integral over A,
then Ay = A

Exercise 7 (Nakayama's Lemma). Let A be a local ring with maximal ideal m, let M
hean A-module and N € M a submodule such that M/ N is linitcly generated. Then
one has the implication:

M=N+mM

§12. Orders

The ring OK of integers of an algebraic number lield K is our chief interest
because of its excellent property of being a Dedekind domain. Due to
important theoretical as well as practical circumstances. however, one is
pushed to devise a theory of greater gencralily which comprises also the
theory of rings of algebraic integers which, like the ring

5 C(vE),

are not necessarily imcgrally dosed. These rings are the so-called orders.

o=

(12.1) Definition. Let K IQ be an algebraic number field of degree n. An order
of K i.€ a subring o of OK which contains an integral basis of length n. The
ring OK is called the maximal order of K.
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In concrete terms, orders are obtained as rings of the form
= Elo, e

where a;, .. ,a, are integers such that K == Q(a;. ,a,). Being a
submodule of the free 2-module 1y, O does of course admit a Z-basis which,
as Qo = K, has to be at the same time a basis of K 1Q, and therefore has
length n. Orders arise often as rings of multipliers, and as such have their
practical applications. For instance, if a1, - an is any basis of K 1Q and
M = Zal +'* ¢+ +Zay, then

om=(acek lav ¢ M}

is an order. The theoretical significance of orders, however, lies in the fact
that they admit “singularities”, which are excluded as long as only Dedekind
domains with their "regular” localizations op arc considered. We will explain
what this means in the next section.

In the preceding section we studied the localizations of a Dedekind
domain ok. They are extension rings of ok which are integrally closed,
yet no longer integral over Z, Now we study orders. They are subrings
of ok which are integral over Z, yet no longer integrally closed. As a
common generalization of both types of rings let us consider for now all
one-dimensional noetherian integral domains. These are the noetherian
integral domains in which every prime ideal p ¥ {} is a maximal ideal.
The term "one-dimensional” refers to the general definition of the Krull
dimension of a ring as being the maximal length d of a chain of prime

ideals Po@ Pl €- --€Pd,

(12.2) Proposition. An ordero ofK is a one-dimensional noethcrian integral
domain.

Proof: Since o is a finitely generated Z-module of rank n = [K : IQ],
every ideal a is also a finitely generated Z-module, and a fortiori a finitely
generated o-rnodulc. This shows that 0 is noetherian. If p #- 0 is a prime
ideal anda E)) n Z, a#-0, then a0 € p € 0, i.e,))and 0 have the same
rank n. Therefore o/p is a finite integral domain, hence a field, and thus p
is a maximal ideal. 0

In what follows, we always let a be a one-dimensional noethcrian integral
domain and K its field of fractions. We sel out by proving the following slronger
version of the Chinese remainder lhcorem.
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(12.3) Proposition. Ifa #- 0 isanideal oft), then

oa. ;: EB Opluop = EB opluop.
p p=>ll

Proof: Let @D = o N aop. For almost all p one has p £. aand therefore
aop = op, hence Clp = o. Furthermore, one has I = np cip = ny ap.
Indeed, for any a E NV Op, the ideal b ={x Eo | xa E o/ docs not belong
to any of the maximal ideals p (in fact, one has s@a e o for any sp ‘(- p).
consequently, b = o, i.e, a= | a En, as claimed. (II.I) implies that,
if p 2 a, then p is the only prime ideal containing iip- Therefore, given two
distinct prime ideals ):land q of o, the ideal cip+aq cannot he contained in any
maximal ideal. whence Op+ iig = o. The Chinese remainder theorem (3.6)
now gives the isomorphism

ola & EB ofiip,
p=>ll
and we have 0/01;= Op/noy, because P = p mod Op is the only maximal
-900 O

Forthering o, the fractional ideals of o, in other words, the finitely generated
nonzero o-submodules of the field of fraclions K, no longer form a group -
unless o happens to be Dedekind. The way out is to restrict attention to
the invertible ideals, i.e., to those fractional ideals a of o for which there
exists a fractional ideal b such that

ab= o.

These fonn an ahelian group, for trivial reasons. The inverse of a is still the
fractional ideal

u-'={xEKIxus;o},
because it is the biggest ideal such that uu-! <; 0. The invertible ideals of o
may be characterized as those fractional ideals whicl1 are "locally” principal:

(12.4) Proposition. A fractional ideal a of o is invertible if ,md only it: for
every prime ideal ). -1- 0.

is a fractional principal ideal of Op.
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Proof: Let a be an invenihle ideal an<l ab = o. Then | = Léz’a;h;

wilh a; E a. hi E b, and not all a;h; E Op can lie in the maximal ideal
pop, Suppose azh; is a unil in Op, Then ap = ajop because, for x e ap,

xhl E apb = Op, hence x = xhl(blai)—lal E al0p,

Conversely. assume op = oop is a principal ideal apOp, ap e K', for
every p. Then we may and do assume that ap E a. We claim that the
fractional ideal o-* ={x e K | xo'S; o} isan inverse for n. If this were not
the case, then we would have a maximal ideal p such that 00-1S;; pCo.

Letar. -.- a1 be generators of a As a; E OpOp. we may wrile a; — ap@-+
with h; e o.s; E o, t,. Then s;a; e apcy, Putting., = .{1---n, we have
sa, e apO for i ...,11, hence Japla f. o and therefore .wie e a-l.
Consequenlly, s = .rp'ap e 0-'0 S; p, a contradiction. D

We dcnolc the group of invertiblt: ideals of cJ by J (O). It mntllins the
group P(o) of fractional principal ideals ao. a EK@.

{12.5) Definition. The quoticnr group
Pic(0) = .I(0)/P(0)

i.¢ called the Picard €roup of the ring o.

In the case where O is a Dedekind domain, the Picard group is nf (.:oursc
nothing but the ideal class group CIK, In general, we have the following
descriplion for J(o) and Pic(0).

(12.6) Proposition. Th€ correspolldencie a (aop) yields an
i.-.omorphism
J(o) ;ad, P(0,J.
[

Idemifyitlg r/1e- . @ubgroup P(0) wilh ils irn,1ge in the dire,:t sum one gcu
Pirto) = (G Plog) /P
1

Proof: Forevery a e ./(a), op= noj, is a principal ideal by (12.4), and we
have op — op for almosl all p because a lies in only linilely many maximal
ideals p. We therefore ublain a homomorphism
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It is injective, for if op = op for all p. then as; np Op = 0 (see the proof
of (11.5)), and one has to have a = 0 because otherwise there would exist
a maximal ideal p such that a<;; p C o, i.e. ap <; pop -1- op, In order to

prove surjectivity, let (apop) E ffiP P(op) be given. Then the a-submodule

a= napOp
P

of K isa fractional ideaJ. Indeed, since af:'o € = 01;foralmost all p, there is

some ¢ E cJ such that cap E Op for all p, i.e, ca<;;; p Op = 0. We have to
show that one has

for every p. The inclusions; is trivial. In order to show that apop <;; aop, let
us choose C E 0, C -I=- 0, such that cap’aq E 0 for the llnitely many g which
satisfy ap'ag ¢ oq. By the Chinese remainder theorem (12.3), we may find
aEo0 such that

a= cmodp and akE ca;laqoq for q#-p.
Then « =ac-* is a unit in op and apE E nqagOq = a, hence

OpOp = (apE)Op € OOp. [}

Passing from the ring O to its normalization O, i.e., to the integral closure
of 0 in K, one obtains a Dedekind domain. This is not all !hat easy to prove,
however, because t'? isin general not a finitely generated o-module. But at
any rate we have the

(12.7) Lemma. Lei o be a one-dimen. gional noctherian integral domain and 0
its normalization. Then, foreach ideal a # 0 o[o,the quotient ()jab is :1 finitely
generated o-module.

Proof: Leta En, a# 0.Then O/ni:1isa quoticm of ii thus suffices
to show that i5/a0 is a finitely generated o-module. thi€y end, consider
in o the descending chain of ideals containing ao

om= (amOno,ao).

This chain becomes stationary. In fact, the prime ideals of the ring o/ao
are not only maxima! but also minimal in the sense that 0/a0 i€ a zero-
dimensional noetherian ring. In such a ring every descending chain of ideals
becomes stationary (see §3, exercise 7). If the chain CIm = am mod ao is
stationary at n, then so is the chain am. We show that, for this n, we have

( €a-no+ al).
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Lei /j = l Es h,c E o. Apply the descending chain condition to the
ring 0/<--0 and lhe chain of ideals (II""). where ii = a mod co. Then
(iih) = (ah—ll), i.e., we lind some .( e O such that ah :: wh+1 mod 0.
hence (I - xa)ah Eco. and therefore

h . & (1-xa)ah 1
f3= z.(1 -xa) +fixa= I--,..- +/Jxa Ea- o+aD.

Let h be Ihe smallest positive integer such that fJ E a-"o +ab. It then
suffices 10 show that h _:::in. Assume h > n. Writing

fi=€ +mi withuEo, iiEb,

we have u = ah(/1 - aU) € 'O no® ai1= th+ because h > 11, hence
u = ah+tti' +au’, u' Et:, ii' £ 0. Substituting this into(*) gives

8=, +a(li+ii) Eal-To+a0.

This contnldicls the minimality of h. So we do have b £: a "o +ai:J.

0/aO thus becomes a submodule of the a-module (a "o + a0)/aO
generated by a-" mod aO. h is lhercforc itself a finilely generaled o-module.
g.c.d. O

(12.8) Proposition (kruLL-aki7.Uk). Lero be a one-dimClJ/;ion.1/ noetherian
integrnl domain with held of {ractiorls K. Let LI K be a Jinitc exrcn.€ion and()
the imegr;iJclo.@ure of o inL. Then O isa Dedekind domain.

Proof: The far.:ts that O is inicgrally dosed and that every nonzero prime

ideal is mnximal. arc deduced a.; in (3.1). Il remains 10 show 1hat CJ is
noelhcrian. Let w;- . 1>, he a basis of L]JK which is contained in CJ.

Then the ringOy = orw;-  w,,| is a finitely genemted o-mo<lule and in
particular is noetherian since O is nocthcrian. We argue as before that Clg is
one-dimensional and are thus reduced to the case L = K. So lcl 21 be an
ideal of CJandaE Qtl'o, a::f:. O: then hy the above lemma OjuO is a finitely
generated 0-mOOulc. Since O is noetherian, so is the o-submodule

Zi./a0. and .ilso the O-rnodulc Qt. D

Remark: The above proor is taken from kuiLwskys book 182J (see also
11011). 11 show1>al the same time 1h:.11proposition (8.1), which we had proved
only in the 1.:.a€ of a separable extension LIK, is valid for general tinite





extensions of the field of fractions of a Dedekind domain.
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Next we want to compare the one-dimensional noetherian integral do-
main O with its nonnalization 6. The fact that 8 is a Dedekind domain is
evident and does not require the lengthy proof of (12.8) provided we make
the following hypothesis:

(*) 0 is an integral domain whose normalization is a linitely generated
o-modulc.

This condition will be assumed for all that follows. It avoids pathological
situations and is satisfied in all interesting cases, in particular for the orders
in an algebraic number field.

The groups of units and the Picard groups of 0 and O are compared with
each other by the following

(12.9) Proposition. One has the canonical exact sequence
+ EBO;;0;
P

Inthe sum, p varies over the prime ideals == 0 of o and op denote. € the integral
closure of op in K.

Proof: If j) varies over the prime ideals of 0, we know from (12.6) that

J(ol ™

If pisaprime ideal of O, then pO splits in the Dedekind domain into a
product
PO =By B

i.e., there are only finitely many prime ideals of() above p. The same holds
for the integral closure op of op, Since every nonzero prime ideal of op
has to lie above pop, the localization Op has only a finite number of prime ideals
and is therefore a principal ideal domain (see S3, exercise 4). In view of (
12.6), it follows that

Pop) = 3(0p) @ EB row
»

and therefore

1(0) " EBEB p(0J ™ EB p(op).
P PectP P
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Observing that P(R) _ K*R* for any integral domain R with field of
fractions K, we obtain the commutative exact diagram

| -+ K*[0* -+ EBK* Jo; ---+ Pic(0) -+ |

l, W ]

| -+ K* ;0% -+ EB Kk* ;0} -+ Pic(0) -+ I
1

For such a diagram one has in complete generality the well-known snake
lemma: the diagram gives in a canonical way an exact sequence
| -+ ker(a)---+ ker(f!)---+ ker(y)
€ coker(a) ---+ cokcr(,8) -+ coker(y) ---+ |
relating the kernels and cokernels of a/3y (see [23], chap. Ill, §3,

lemma 3.3). In our particular case, a, /3, and therefore also y, are sur:jective,
Whereas

ker(a) = 8*Jo* and ker(/3) =
This then yields the exact sequence

| =4 0% ==+ O* =+ ---+ Pic(0) ---+ Pic(td) —+ 1. D

A prime ideal p=i=-0 of 0 is called regular if op is integrally closed, and
thus a discrete valuation ring. For the regular prime ideals, the summands
in (12.9) are trivial. There are only finitely many non-regular prime
of o, namely the divisors of the conductor of 0. This is by definition
the biggest ideal of E) which is contained in o, in other words,

j=lued|abc o).

Since t7> is a finitely generated o-module, we have f -1- 0.

(12.10) Proposition. For any prime ideal p -# 0 of 0 one has
Pff 4= pisregular.

Iflhis is chc case. then D = p() is a prime ideal of() and op=  Op.
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Proof: Assume p tf, ie, p # f, and lett €,f p. Then tO £; o, hence

0 @ 70 € op. If m = pop is the maximal ideal of op then, putting
P= mno, P isa prime ideal of O i;uch that pi; pno, hence p= Pn o
because p is maximal. Trivially, op S;; Op, and if conversely Y for
aEb 1€ @ fjthentacoandtreo, f, hence ¥=u¢e op.
Therefore Op =Op.Thus, by (11.5), Op is a valuation ring, i.e., p is regular.

One has furthennore that 0 = pO. In fact, P is the only prime ideal of 6
above p. For if Q is another one, then t\, = Op i; f)g, and therefore

P=6njiops;; On cjog = (.

hence P = (. Consequently, p() = ji", withe 2: 1, and furthermore

m =pop= (pO)op = p"op =m", i.e, ¢ = 1 and thus P = pO.
Conversely, assume Op is a discrete valuation ring. Being a principal ideal

domain, it is integrally dosed, and since O is integral over 0, hence a f'ortiori

over op, we have i) i; Let , X,, be a system of generators
of !he tl-module 0. We may witha, E1), siEo, p. Setting
s=s1 sy Eo P, we find sxi,. E o and therefore sO £;; 0, ie,
s Ef, 1.1t follows that p 1f. 0

We now obtain the following simple description for the sum EBV o;;0;
in (12.9).

(12.11) Proposition. , &5/

= @D o/t

Proof: We apply the Chinese remainder theorem ( 12.3) repeatedly. We have

() off;: ffiop/fop,

P
The integral closun: 8p of op possesses only the finitely many prime ideals
that lie above pop, They give the localizations where j:i varies over the
prime ideals above p of the ring At the same 2>p is the localintion

of O with respect to the multiplicative suhset O,  j:i. Since f is an ideal of(}.
i follows that fOp = f.:Jp, The Chinese remainder theorem yields

opiop 3: EB opiiop
iiop

and

EB EB cyfop -

P PP

@) 8j
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Passing to unit groups, we get from (1) and (2) that
[©) (o) l(or1y 06“5(61-#@-!’!(0.Ji0w
For f £ p we now consider the homomorphism

w0, = (Op fFOpY f(0p /)

It is surjective. In fact, if 7 mod ft\, is a unit in bp/f8p, then£ is a uniL in 8u.
This is so because the units in any ring are precisely those elements that are
not contained in any maximal ideal, and the preimages of the maximal ideals
of 6p/féu give precisely a\l the maximal ideals of Op, since fép S; p6p.
The kernel of ip is a subgroup of which is contained in op, and which
contains A, . It is therefore equal to We now conclude that

0,0 € (ooifp)(optfop)*.

This remains true also for p £ f because then both sides are equal to 1
according to (12.10). The claim of the proposition now follows from (3). D

Our study of one-dimensional noctherian integral domains was motivated
by the consideration of orders. For them, (12.9) and (12.11) imply the
following generalization of Dirichlet's unit theorem and of the theorem on  the
liniteness of the class group.

(12.12) Theorem. Leto be an order in an algebraic number field K, ok the
maximal order, and f Ihe conductor of o.
Theo the groups o}( /o* aod Pic(0) are finite aod one has

# Pic0=) €h_KeHOKI>* ,
(a@, o) #@/fy

where hk is the class number of K. In particular, one has that

rank(0*) = rank(o@) = r+s- I

Proof: By (12.9) and (12.11). and since Pic(oK) = C!K, we have the exact
sequence

| — 0} fo" — (og /I (0} —> Pic) —s Clx —> 1.

This gives 'he claim. a
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The delinition of the Picard group of a one-dimensional noetherian integral
domain o avoids the problem of the uniqueness of prime ideal decomposition
by restricting allcntion to the invertible ideals, and thus leaving aside
the information carried by noninvcrtibles. But there is another important
generalization of the ideal class group which docs take inLo account all prime
ideals of 0. Itisbased on an artificial re-introduction of the uniqueness of prime
decompmition. Thi. € group i. € called the divisor class group, or Chow group
of 0. Its definition starts from the free abelian group

ov(V) = EB Zp
P

on the set of all maximal ideals p of o (i.e., the set of all prime ideals € 0).
This group is called the divisor group of o. Its elements are fonnal sums

D= l:n,p
P

with np E Z and flp = 0 for almOSI all p, called divisors (or 0-cycles).
Corollary (3.9) simply says that, in the case of a Dedekind domain, the divisor
group Div(o) and the group of ideals are canonically isomorphic. The
additive notation and the name of the group stem from function theory where
divisors for analytic functions play the same role as ideals do for algebraic
numbers (sec chap. 11, *3).
In order to define lhe divisor class group we have to associate to every

" EK@ a "principal divisor" div(/). We use the case of a Dedekind domain
to guide us. There the principal ideal (/") was given by

<n=N pu_vU‘
p

where vp : K* € :Z is the p-adic exponential valuation associated to the
valuation ring op. In general, op is not anymore a discrete valualion ring.
Nevertheless, op defines a homomorphism

ordp: K* @ :Z
which generalizes the valuation function. If f =a/h E K* witha, hE o,
then we put
ordp(f) = f"v(op/aop) € foP(op/hop).
Where denotes the length of an Op-module M, i.e., the maximal
length strictly decreasing chain

M=Mo@Mm1;1- Imt=0
of all-submodules. In the special case where ou isa discrete valuation ring
with maximal ideal m, the value v = vp(@) of a £ Op, for a -f 0, is given
by the equation
aOp=rn".

e
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It is equal to the lcnglh of the Op-module op/mv, because the longest chain
of submodules is
oy/m’ Tm/m" o 2mtmt = (0

Thus the function ordp agrees with the ex1xmential valuation vp in this case.

The property of the function ordp to be a homomorphism follows from
the fact (which is easily proved) that the length function t; is multiplicative
on short exact sequences of Op-miXlules.

Using the functions ordp : K* -—+ Z, we can now associate to every
element f E K* the divisor

div(f) @ Locd,®p,

and thus obtain a canonical homomorphism

div: K" - + Div(0).

The elements div(f) are called principal divisors. They fonn a subgroup
P(0) of Div(0). Two divisors 1J and D' which differ only by a principal
divisor arc called rationally equivalent.

(12.13) Definition. The quotient group
CH(0) =Div(0)/P(0)

is called the divisor class group or Chow group of o.

The Chow group is related to the Picard group by a canonical homomor-
phism
div: Pic(0)-----+ CI/*(0)

which is defined as follows. If aisan invertible ideal, then, by (12.4), aOp-
for any prime ideal i-, -/- 0, isa principal ideal apOp, ap EK*, and we put

div(a) = L~ ordpap)):I.
P

This gives us a homomorphism
div: J(o) - + Div(0)

of the ideal group J (0) which takes principal ideals into principal divisors,
and therefore induces a homomorphism

div : Pic(0) -+ CH (o).

In the special case of a Dedekind domain we obtain:
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(12.14) Proposition. if o is a Dedekind domain. rhen
div: Pic(0)-,,,. CI/*(0)
is :m isomorphi @m.

fizxerclse 1. Show thal

CEX.YINXY - X} C[X, YI(XY - )

CIX.Y)/(X2-Y3). X, YU (Yr-xt-xb)
areonc-rlimem,ional noeJheriim rings. Which one.€ are integral domain’-"-' DeJr.rnline
their nmmali7.alions.

Hint: For instance in the fast ell.ample, put I= X/Y and show that the homomor-
phism C{X. Y/----,. C,,,. \'1-+@ - 1,YI1-+ f(t'- 1, ha€ kernel (Y1- xZ. X.").
Exercise 2, Let a am.I b be positive integers that arc not perfect squares. Show that \ne
fundamental unit of the order Z + Z ./a of the tield Q( ./a) is also the fundamental
unit of the order J'. + Z-/a+Z-.,.Ch + Z,/a€ in the field Q(./a,€).
Exercise 3. Lel K be a number field of degree n = IK : QI. A complete module
in K is a subgroup of the fom1

M = Zal+ + ztt@
where a; .- a,. arc linearly independent elements of K. Show that 1he ring of
mulriplicn.

o=leck|eMc M|
is an onler in K. bol ingeneral not the maxima! order.
Exercise 4. Determine the ring of nrnltiplierj; 0 of 1hc complete module M =

Z +2./2inQ(,/2). Show thatt =1 + ./2 is a fum.hunemul unil of O. Dct...rminc
il integer solutions of .. Pell'$ equation--

x* -2/ =T.
Hint: N(x +y./2) =x1- 2y2, N3 + ,/2) = N(5 + 3,/2) = 7.

Exencise 5. In a one-dimensional noetherian integral domain lhe regular prime
ideals ,f. 0 are precisely lhe inv1:rtihlc prime ideals.

§1J. One-dimensional Schemes

The first approach to the theory of algebraic number fields is dominated
by the methods of arithmetic and algebra. But the theory may also be treated
fundamemally from a geometric point of view. which will bring out novel
a@pects in a variety of way€. This geometric interpretation hinges on the
possibility of viewing numbers a€y functions on a topologkal space.
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In order w© explain this, let u<stan from polynomials

f(x) - a,x"+ -+au
with complex coefficients a; £ C, which may be immediately interpreted
as functions on the complex plane. This propeny may be formulated in a
purely algebraic way as follows. Let a e C be a point in the complex plane.
The set of all functions f(x) in the polynomial ring C[x] which vanish at
the point a fonn:s the maximal ideal p = (x - a) of C[xI. In lhis way the
points of the complex plane correspond 1-1 to the maximal ideals of Cfxl.
We denote the set of all the.,;;e maximal ideals by

M = Max(Cix).

We may view M asa new kind of space and may interpret the elements f(x)
of the ring C[x] a,;; functions on M as follows. For every point p = (x - @)
of M we have the canonical isomorphism

crxl/P -2, C,

which sends the residue class f(x) mod p to /(a). We may thus view this
residue class

/(p) := f(x) mod p E *(p)
in the residue cla.-.s field K(p) = C(x)/p as the "value.. of / at lhe poim
p E M. The topology on C cannot be trnsferred to M hy algebraic means.
All that can be salvaged algebr.i.ically arc the point sets defined hy equations
of the form

f(x) =0

(i.e., only the finite sets and M itself). These sets are defined to be the closed
subsets. In tile new formulation they are !he sets

V()= JpeMI /(p)=O1 = Ipe MIp2(f(x))J.

The algebraic inlerprelation of functions given above leads 10 1he fol-
lowing geomelric perception of completely general rings. f-or an arbitrary
ring 0. one introduces the spectrum

X = Spec(o)
as being 'he et of all prime ideals p of 0. The Zariski topology on X is
defined by stipulating that the sets
V(n)= IPIP 2-J
be the closed sets. where a varies over the ideals of 0. This does make X into
a topological space (observe Ihal V(o) U V(b) = V(ab)) which, however, is

usually noLHausdorff. The closed points correspond to the maximal ideals
of o.
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The elements f £ 0 now play the r61e of functions on the topological
space X: the "value" off at the point p is defined to be

f(p) € f mod P

and is an element of the residue class field K(p), i.e., in the field of fra{:tions
of o/p. So the values off do not in general lie in a single field.

Admitting also the non-maximal prime ideals as non-closed points, turns
out to be extremely useful - and has an intuitive reason as well. For imtance
in the case of the ring o = C[xJ, the point j) = (0) has residue class
field K(P) = C(x). The "value" of a polynomial .f E C[x] at this point
is f(x) itself, viewed as an element of C(x). This clement should be thought
of as the value of f at the unknown place x - which one may imagine lo
he everywhere or nowhere at all. This intuition complies with the fact that
the closure of the point p = (0) in the Zariski topology of X is the total
space X. This is why p is also called the generic point of X.

Example: The space X = Spec(Z) may be represented by a line.

e e e e aaes R ——

7 1 generic point
For every prime number one has a closed point, and there is also the generic point
(0), ti1e closure of which is the total space X. T/le nonempty open sets in X
arc obtained by throwing out finitely many prime numbers p1, p11-
The integers a E Z are viewed as functions on X by defining the value of a
at the point (p) to be the residue class

a(p) =a mod p E Z/pZ.

The fields of values are then
z/2z, 7/3z, z/5Z, zI7Z, ZIZ, ..().

Thus every prime field occurs exactly once.

An important refinement of the geometric interpretation of elements of
the ring 0 as functions on the space X = Spec(o) is obtained by fanning
the structure sheaf ox. This means the following. Let U -I=-0 be an open

subset of X. If 0 is a one-dimensional integral domain, then the ting of
“regular functions” on U is given by

o(Ui & If | aPy #o  foe all p Eu\.
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in other words, it is the localization of 0 with respect to the multiplicative
setS = 0" UpcUp (See € 11), In the general case, o(U) is defined to
consist of all elements
s = (sp) E fl Op
PEU

which locally are quotients of two elements of 0. More precisely, this means
that for every p £ U, there exists a neighbourhood V i; U of p, and elements
f.g E o such that, for each q EV, one has g(q) # 0 and sq= fig
in og. These quotients have to be understood in the more general sense
of commutative algebra (sec §11, exercise 1). We leave it to the reader to
check that one gets back the above definition in the case of a one-dimensional
integral domain o.
If v £;U are two open sets of X, then the projection

Tle - Tl

p<ci) PEV

induces a homomorphism
PUV : O(U) ----- + o(\V)'

called the restriction from U to V. The system of rings o(U) and mappings
puv is a sheaf on X. This notion means the following.

(13.1) Definition. Let X be a topological space. A presheaf F of abclian
groups (rings, etc.} consists of the following data.

(1) For every open set U, an abelian group (<I ring, etc.) :F(U) is given.
(2) Forevery inclusionU £;V, a homomorphism Puv : :F(U) -+ :F(V) is
given, which is c,llled restriction.

These daw <Jre subject to the following conditions:
(@ F(0) €0,

(b) Puu is the idenlityid: :F(U)--+ :F(U),

(c) Puw=Pvwopuv,foropcnsetsWEVE;U.

The elements s e :F(U) arc called the sections of the presheaf :F over U.
If V £ U, then one usually writes = s Iv. 'The dcfmition of a
presheaf can he reformulated most in the language of categories.
The open sets of the topological space X form a category X;<=rin which only
inclusions arc admitted as morphisms. A presheaf of abclian groups (rings)
isthen simply a contrav:irianl functor

F:  Xior——>- (ah), (rin@s)

into the category of abelian groups (resp. rings) such that F(0) = 0.
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(13.2) Definition. A presheaf :Fon the topological space X is called a sheaf
if, for all open coverings (U1f of the open setsU, one /ms:

(i) Ifs,s' E F(U) are two sections such thatslu, = s'l1lI, foralli, then
s=s'.

(i) Jfsi E:F(U;) isafamilyo[sectionssuchthat

stlunn, = silene,

forall i. j, then there exist.€p a sections E F(U) such thal slu, =s; for alli.

The stalk of the sheaf F at the point x £ X is defined to be the direct
limit (see chap. IV, §2)

F, & i) F).
N

where U varies over all open neighbourhoods of x. In other words. two
sections su E :F(U) and sv E F(V) are called equivalent in the disjoint
union if there exists a neighbourhood W S:; U n V of x such
that = sv Iw. The equivalence classes are called germs of sections

at x. They are the elements of Fx.

We now return to the spectrum X = Spcc(o) of a ring 0 and obtain the

(13.3) Proposition. The rings o(U), together with the restriction mappings
Pu v, form a sheaf on X. Il is denoted by ox and cnlled the structure sheaf
on X. The stalk of ox at the point p € X i.¢ the localization Op, i.e.,
oX.p i Op

The proof of this proposition follows immediately from the definitions.
The couple (X,0x) is called an affine scheme. Usually, however, the structure
sheaf ox is dropped from the notation. Now let

be a homomorphism of rings and X = Spec(o), X' = Spec(d). Then <p
induces a continuous map

frX — X, Feh=e'w).
and, for every open subset U of X, a homomorphism
li@: o(U)----- +0o(U"), si—+so fllI'

where U' = f -1(U). The maps J,:, have the following two properties.
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a) If V €U arc open sets, then the diagram
r
o(V) @'~ - o(U)

| r

oV) & o(V?)

is commutative.
b) for p' EU'€ X and a E o(U) one has

a(/lp)) €0 => fj@)() €0.

A continuous map f : X' --+ X together with a family of homomorphisms
fli; c)(U)--+ o(U) which satisfy conditions a) and b) is called a morphism
from the scheme X' to the scheme X. When referring 10 such a morphism,
Lhe maps fl) are usually not written explicitly. One can show that every
morphism between two affine schemes X' = Spec(o) and X = Spec(O) is
induced in the way described above by a ring homomorphism <p ; 0 -+ 0%

The proofs of the above claims arc easy, although some of them are a hit
lengthy. The notion of scheme is the basis of a very exlensive theory which
occupies a central place in mathematics. As introductions into this important
discipline let us recommend the books [511 and [104].

We will now confine ourselves to considering noethcrian integral do-
mains o of dimension :S 1, and propose to illustrate geometrically, via the
scheme-theoretic interpretation, some of the facts treated in previous sec-
tions.

I. Fields. If K isa field, then the scheme Spec(K) consists of a single point
(0) on top of which the field itself sits as the structure sheaf. One must
not think that these one-point schemes arc all the same because they differ
essentially in their structure sheaves.

2. Valuation rings. If o isadiscrete valuation ring with maximal ideal p, then
the scheme X = Spec(O) consists of two points, the closed point x = p with
residue class field K(p) = o/p, and the generic point T/ = (0) with residue
class field K(TJ) = K, the field of fractions of 0. One should think of X as
a point x with an infinitesimal neighbourhood descrihed by the

generic point T/:

X:

This intuition is justified by the following observation.
]
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The discrete valuarion rings arise as localizations

o,é[f 1 J.geo, g(p),601

of Dedekind domains o. There is no neighbourhood of p in X = Spcc(o)
on which all fum:lion.il E op are defined becau.€e, if o is not a local
ring. we find by the Chinese remainder theorem for every point q “# p,
g :t. 0, anelement g e o satisfying g ::::. 0 mod g and >: :;;;; | mo<I p.
Then } e op as a function is nol defined at . But every element { E op
is defined ong sufficii::ntly small neighbourhood; hence one may say that
all clements Taof the discrete valuation ring op are like functions defined
on a "germ" of neighbourhoods of p. Thus Spcc(o,,) may be thoughl of as
such a “"germ of neighbourhoods" of p.

We want 10 point out a small discrepancy of intuitions. Considering the

spectrum of 1he one-dimensional ring C[x ], the points of which constitute the
complex:plane, we will not want to visualize the infinitesimal neighbourhood

X,, = Spcc(Cfxfp) ofa point p = (x -a) asa small fine segment, but rather
as a little disc:

This two-dimensional nature is actually inherent in all discrete valuation
rings with algebraically closed residue field. But the algebraic jusliticalion of
this imuition is provided only by the introduction of a new 1opology, the etale
topology, which is much finer than the Zariski topology (sec 11031. {f32!).

3. Dedekind rings. The spectrum X = Spcc(o) of" Dedekind domain o is
visualized as a smooth curve. At each poilll p one may consider the
localil.ation op. The inclusion o € op induces a morphism
f X = Spec(og) —> X,
which extracts the scheme X p from X as an “infinitesimal neighbourhood"
of p:
SR

1s

7 P ~ X = Spec(0)

generi(.: point
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4. Singularities. We now consider a one-dimensional noclherian integral
domain o which is not a Dedekind domain, e.u., an order in an algebraic
number field which is different from the maximal order. Again we view the

scheme X = Spec(o) as a curve, Bul now the curve will not be everywhere

smooth, but will have singularities at certain points.

L4 x€ = Spec(c.ip)

e Spec(o)

T
" geaeric poise

These arc precisely the nongeneric points p for which the localization op is
no longer a discrete valuation ring, that is to say, the maximal ideal pop is
not generated by a single element. For example, in the one-dimensional ring
0 =C[x.yl(y? - x3), the closed points of the scheme X are given by the
prime ideals

== - a y- h) mod (y2,-ChH
where (a, h) varies over the points of C? which satisfy the equation

h2-a% =0.

The only singular point is the origin. Jt corresponds to the maximal ideal
o= (X, Y), where X = x mod(/- - x*), Y =y mod (y* - x3) E o. The
maximal ideal )loopg of the local ring is generated by the elements .x,y, and

cannot be generated by a single element.

5. Normalization. Passing to the nomialization O of a one-dimensional
noetherian integral domain o means, in geometric terms, taking the resolution
of the singularities !hat were just discussed. Indeed, if X = Spec(o) and
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X = Spec(O), then the inclusion 0 -+ 0 induces a morphism f: X--. X.

Since fJ is a Dedekind domain, the scheme X is to be considered as smooth
JfpE) = P? --. P is the prime factorization of p in b, then P. . p,. arc
the different points of X that are mapped to p by .f. One can show that p
is a regular point of X - in the sense that op is a discrete valuation ring -
if and only Ifr =1,e1 =1 and f1 = (6/P1: o/p) = I.

6, Extensions. Let 0 be a Dedekind domain wilh field of fractions K.
Let LIK be a finite separable extension, and O the integral closure of o
in L. Let Y = Spec(0), X = Spec(0), and

(X-c,- y

pO = :p&1l. -‘BO'
the prime decomposition of p in O, then'131, ... , '|J,. are the different points
of X which are mapped to)) by f, The morphism f isa "ramified covering."
It is graphically represented by the following picture:

t  ramified pointst

Thls picture. however, is a fair rendering of the algebraic situation only
in the case where the residue class fields of o arc algebraica//y closed (like
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for lhe ring C[x 1). Then, from the fundamental identity L, e ,t; =n, there

are exactly 11 = [L : K1 points 31, . g} of X lying above each point p
of Y, except when p is ramified in 0, At a point p of ramification, several
of the points g}1, _ ., @, coalesce. This also explains the terminology of

idc,ils that "ramify."

If LIK is Galois with Galois group G = G(LIK), then every auto-
morphism rr £ G induces viaa :0 -+0 an automorphism of schemes
a: X —=+ X, Since the ring 0 is fixed, the diagram

Xe X
Iy If

is commutative. Such an automorphism is called a co,-ering transformation
of the ramilied covering X/ Y. The group of covering transfonnations is
denoted hy Auty(X). We thus have a canonical isomorphism

G(LIKJ ;¢ Auty(X).
In chap. 11, @7, we will sec that the composite of two unramified extensions
of K is again unramified. The composite , taken inside some algebraic
closure K of K, of all unramitied extensions LI K is called the maximal
unramified extension of K. The integral closure  of 0 in K is still a one-
dimensional integral domain, but in general no longer noetherian, and, as a
rule, there will be infinitely many prime ideals lying above a given prime
ideal p == 0 of 0. The scheme Y = Spec((,) with the morphism

fcY-+Y

is called the universal covering of Y. It plays the same r6le for schemes
that the universal covering space X -+ X of a topological s€ace plays in
topology. There the group of covering transfonnations Autx(X) is canoni-
cally isomorphic to the fundamental group rry(X)_ Therefore we define in
our present context the fundamental group of the scheme Y by

1Y) = AL(Y) = GKIKJ.

This establishes a first link of Galois theory with classical topology. This
link is pursued much further in etale topology.

The geometric point of view of algebraic number fields explained in this
section is corroborated very convincingly by the theory of function fields of
algebraic curves over a finite field IFr- In fact, a very close analogy exists
between both theories.
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§14. Function Fields

We concJude this chapter with a brief sketch of the theory of function fields.
They represent astriking analogy with algebraic number fields, and since they
are immediately related 10 geometry. they actually serve asan important model
for the theory of algebraic number fields.

The ring Z of integers with its lield of fractions Q exhibits obvious
analogies with the polynomial ring IFp[tl over the field IFp with p elements
and its field of fractions Fp(t). Like Z, Fp[1J is also a principal ideal domain.
The prime numbers correspond to the manic irreducible polynomials p(t) E
Fp[t]. Like the prime numbers they have finite fields JF,,,1, d = dcg(p(t)),
as their residue class rings. The difference is, however, that now all these
fields have the same characteristic. The geometric character of the ring IF,,[t]
becomes much more apparent in that, for an element f = f(f) € IF,,[t], the
value of .f at a point p = (p(t)) of the affine scheme X = Spec(IF,[t]) is
actually given by the value /(a) EFp, if p(t) =t - a, or more generally
by 7(a) EIFnd if a E IFP,1 is a zero of p(t). This is due to the isomorphism

(23] [ ——

which takes the residue class f()J) = f mod p to f(a). In the analogy be-

tween, on the one hand, the progression of the prime numbers 2, 3,5, 7,

and the growing of the cardinalities p, p2 p3, p, . . of the residue fields
IFP" on the other, resides one of the most profound mysteries of arithmetic.

One obtains the same arithmetic theory for the finite extensions K of 1F,,(r)
as for algebraic number fields, This is dear from what we have developed
for arbitrary one-dimensional noetherian integral domains. But the crucial
difference with the number field case is seen in that the function field K
hides away a finite number of further prime ideals, besides the prime ideals
of 0, which must be taken into account in a fully-fledged development of
the theory.

This phenomenon appears already for the rational function field Fp(t).
where it is due to the fact that the choice of the unknown t which detennines
the ring of integrality I'ii'pltl is totally arbitrary. A different choice, say
t' = 1/t,detennines a completely different ring IF,,11/tl, and thus completely
different prime ideals. It is therefore crucial to build a theory which is
independent of such choices. This may be done either via the theory of
valuations, or scheme theoretically, i.e., in a geometric way.

Let us first sketch the more na“ive method, via the theory of valuations.
Let K be a finite extension of IFp(/) and O the integral closure ofIFpU] in K.
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*
By 11, for every prime ideal p#- 0 of o there is an associated normalized
discrete valuation, i.e., a surjective function

Vp:K----.--.-+ZU{oo}
satisfying the properties
(i) Vvp(0) =00,
(i) Vp(ah) = Vp(a) + vp(h),
(iii) vp(a +h) = min{vp(a), vp(h).

The relation between the valuations and the prime decomposition in the
Dedekind domain a is given by

@ & Np™™.
P

The definition of a discrete valuation of K does not require the subring 0 to
be given in advance, and in fact, aside from those arising from a, there are
finitely many other discrete valuations of K. In the case of the field IFp(t)
there is one more valuation, besides the ones associated to the pgime ideals
p = (p(t)) of IFp[tl, namely, the degree valuation .. For pf E IF1,(1),
f, 8 EFy(tl, itisdefined by

w T) Qe - st

It is associated to the prime ideal p = yIF p[yl of the ring IFp[yl, where
y = 1/t. Onecanshow that this exhausts all normalized valuations of the
field F,(r).

For an arbitrary finite extension K of F,(t), instead of restricting attention
to prime ideals, one now considers all normalized discrete valuations vy10f K
in the above sense, where the index p has kept only a symbolic value. As
an analogue of the ideal group we form the "divisor group”, i.e., the free
abelian group generated by these symbols,

Div(K) = \ L nppl npE Z, 113;= 0 for almost all p) .
P
We consider the mapping
div: K* .. Div(K), div(f) = Lvn(f)p,
p

the image of which is written P(K), and we define the divisor class group
of K by
C/(K) € /3;,(K)/P(K).
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Unlike Ihe ideal class group of an algebraic number field, this group is not finite.
Rather, one has the canonical homomorphism

deg: CI(K)----—-+ Z,
which associates to the class of p the degree dcg(p) = \K(P) : wrl of the
residue class field of the valuution ring of p, and which associates to the
class of an arbitrary divisor a = LP n11p Ihc sum

deg(0) = L np deg(p).

]

For a principal divisor div(f), f E K *, we find by an easy calculation that
deg(div(f)) = 0, so that the mapping deg is indeed well-defined. As an
analogue of the finiteness of the class number of an algebraic number field,
one obtains here the fact that, if not CI(K) itself, !he kernel C/°(K) of
deg is finite. The infinitude of the class group of function fields must not
be considered as strange. On the contrary, it is rather the finiteness in the
number field case that should be regarded as a deficiency which calls for
correction. The adequate appreciation of this situation and its amendment
will be explained inchap. 11, € I.

The ideal, completely satisfactory framework for the theory of function
fields is provided by the notion of schem«. In the last section we inlroduced
affine schemes as pairs (X,0x) consisting of a topological space X =
Spec(0) and a sheaf of rings ox on X. More generally. a scheme is a
topological space X with a sheaf of rings ox such that, for every point of X,
there exists a neighbourhood U which, together with the restriction ou of
the sheaf 0x to U, is isomorphic to an affine scheme in the sense of S 13.
This generalization of affine schemes is the correct notion for a function field
K. It shows all prime ideals at once, and misses none,

In the case K = IFp(f) for instance, the corresponding scheme (X, ox)
is obtained by gluing the two rings A = Il,[uj and B = Fplv], or
more precisely the two affine schemes U = Spec(A) and V= Spec(B).
Removing from U t'le point Jo = (u), and tllc point p.CXJ = (v) from V,
one has U-[Pol = Spec('F'p[Il.U-1), V-{Pocl = Spec(I<'p[V, v-:N, and the
isomorphism f : F,,Iu, u-11-—+ 1Fp[v, v-1I, u 1+ v-1, yields a bijection

o V- IP@)- U-IPOL p,_ r(p).

We now identify in the union U U V the points of V - {p'XJ/ with those

of U-{lo) by means of rp, and obtain a topological space X. It is immediately
obvious how to obtain a sheaf of rings ox on X from the two sheaves ou

and ov. Removing from X the point p'X;, resp. po, one gets canonical
isomorphisms

(X-{Px/,0x-fp,,c\);::: (U,ou). (X-{po\,0Ox-1p111);::: (V,0V).
T
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The pair (X, ox) is the scheme corresponding to the field !Fy,(f). It is called
the pr-ojecth-e line over IFr and denoted IPt v

More generally, one may similarly assoct a scheme (X,ox) to an
arbitrary extension K IFp(t). For the precise description of this procedure
we refer the reader to [51].





Chapter 11
The Theory of Valuations

81. The p-adic Numbers

The p-adic numbers were invented at the beginning of the twentieth
century by the mathematician kurt HF.NsF. (1861-1941) with a view to
introduce into number theory the powerful method of power series expansion
which plays such a predominant ré1e in function theory. The idea originated
from the observation made in the last chapter that the numbers f € Z may
be viewed in analogy with the polynomials/(:) E C[zj as functions on the
space X of prime numbers in Z, associating to them their "value" at the
point p EX, i.e., the element

f(p) ,€J mod p

in the residue class field K(p) = z/ pZ.

This point of view suggests the further question: whether not only the
"value" of the integer f E Z at p, but also the higher derivatives off can he
reasonably defined. In the case of the polynomials f(z) £ C[zl, the higher
derivatives at the point z = a are given by the coeflicients of the expansion

f(z) =ao +al(z - a)+- ++all(z -at,
and more generally, for rational functions f(z) = E C(z), with

1?,h E CJz], they are defined by the Taylor expansion

{@=,Javi- av,

provided there is no pole at z = a, i.e., as long as (L -a) f h(z). The fact that
such an expansion can also be written down, relative to a prime number p
in Z, for any rational number f EQ as longas it liesin the local ring

g ={%|shcz pth)

leads us to the notion of p-adk number. First, every positive integer f EN
admits a peadic expansion





f=ao +alp +---+anp",
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with coefficients a; in /0, I, ... p- 1}. i.e., in afixed system of represent-
atives of the "field of va)ucf' K(p) = IF11. This representation is clearly
unique. 11 is computed explicitly by successively di"iding by p, fonning the
following system of cquaiions:

f = ao + Pfi.

1=a1+ Ph-

/€-1=cen1+ Pin.
Jl=m
Herea; E{O,I. ., p- lj denotes the representative of/; mod p e Z/ pzZ.
In concrete cases, one sometimes wriles the number f simply as the se4ucnce
of digits ag,a;a2 . . an, for instance
216=0.0011011 (2-adic).
216 = 0.0022 (3-adic).
216= 1,331 (5-m..lic}.
As soon as one tries to write down such p-adic expansions also for negative
integers, let alone for fractions, one is forced to allow infinite series
avpy = ao +a1J?+a2p2+
Ll
This notation should at fir€t be understood in a purely fonnal sense, i.e.,
LQ, 1,,0a,p* simply stands fgr the sequence of partial sums
Sn= Lai*P", n=12,
=0

(LI) Definilion. Fix aprime number p. A p-adic inh:ger isa formal infinite

scrie. €y

ao+alp +a2p? + -

wiltere O =S a; < p, for all i = 0. 1,2.... Tite sel of all p-.Jdic integers i:;
denoted by Z,,.

The p-adic e;-;pansion of an arbitrary number f e Z(r,) results from the
following proposition about the residue classes in Z/pnz.

(1.2) Proposition. T/1e residue c/as.€pes a mod pfl E Z/ pn'l. can be uniquely
represented inthe foim
a=ao+alp +a2p2 +---+an-1()" 1

whe@0:5a; < pfori =0,....12- I

mod p"”
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Proof (induction on 11): This is dear for n = I. Assume the statement is
proved forn- I. Then we havea unique representation
a=ao+alp+az2p2+  +aq 2ptle+ :pn-l

for some integer,... If,.:= an .1 mod p such that O _:: an-l < p. then an-I
is uniquely detennined by a, and the congruence of the proposition holds.

m]
Every integer f and, more generally, every rational number f E the
denominator of which is not divisible by p, defines a sequence of
classes
f,=f mod pne Z/pnz, n=12,
for which we find, by the preceding proposition,
1 =ao mod p.
S2=ao-+alpmodp?,
."f, =an+ alp+ a2p? mod IF' etc,
with uniquely dctcnnined coefficients ag, a;,a,, E[O. 1. p-1) which

keep their meaning from one line to the next. The sequence of numbers
sn =ao+alp+az2pt+-eta, Ip” L n=12,
defines a p-adic integer

Lapez,.
=0
We call it the p-adic expanion off.

In analogy with the Laurent series f(z) = L€-ma.,(z- a)", we now
extend the domain of p-adic integers into that of the formal series

ap’ =amp A aspT Fantap 4+
where m E Z and O . av < p. Such series we call simply p-adic numbers

and we write Q\, for the set of all these p-adic numbers. If f E Q is any
rational number, then we write

f=fp-"** wherel-:;,hEZ, (,.:h.p)=I.

and if
duF i p-apt -
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is the p-adic expansion of Ti, then we attach to f the p-adic number

aop-m +alp-m+| +- -+am +alll+1P +--- € QP

as its p-adic expansion.
In this way we ohtain a canonical mapping

iji -+ Q.
which takes Z into Zp and is injective. For ifa. b E Z have the same p-adic
expansion, then a - bis divisible by p* for every n, and hence a = h. We

now identify 1Q with its image in Q,, so that we may write Q <;; QP and
Z < Z,,. Thus, for every rational number f EQ, we obtain an identity

F= % at

This establishes the arithmetic analogue of the function-theoretic power series
expansion for which we were looking.

Examples: a) -1 =(p - )+ (- Dhp +(p- NOp2+.
In fact, we have

-l =(p- D+(p- Dp+  +(p-Dp" -1 -/1,
hence-1 =(p- D+(p-Dp+- +(p- Dp*** modp".

h)G =1+p+p2+

In fact,
I= (1+ p=+-+ /JI-1)(1 -p)+ p".

hence 101 - =l+4p+ee+p” 1mod p".
-p

One can define addition and muhiplication of p-adic numbers which
tum Zp into a ring, and IQP into its field of fractions. However, the direct
approach, defining sum and product via the usual carry-over rules for digits,
as one does it when dealing with real numbers as decimal fractions, leads
into complications. They disappear once we use another representation of the
p-adic numbers f = L avpl!, viewing them not as sequences of sums of
integers

Sn= T:a,,g"' E 7,
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but rather as sequences of residue classes

5p =5y mod p' € Bfp" L.

The terms of such a sequence lie in different rings Z/pnz, but these are
related by the canonical projections

A

P < BT«

» - N
LInd o«
and we find
AnlSo1) = 5y

In the direct product
Nzpz =lwelX, ez pzy
1=1

we now consider all elements (x,,n:N with the property that
An(Xn+i)=Xn forall n= 1.2,

This set is called the projective limit of the rings z/ p1Z and is denoted
by Z/ p“"Z. In other words, we have

1j_ 1 auptlz = jamn=n £ fi 2pttz | A (xa1+1) =xn. fi=1,2, .
11=1

n

The modified representation of the p-adic numbers alluded to above now
follows from the

(1.3) Proposition. Associating to every p-adic integer
o
F=Yap
ih
the sequence (f,,),,'=n of residue classes

S, = L a@p" mod pllE Z/pnz.
V=0

yields a bijection
Fp—+ lim Fp"E.
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The proof is an immediate consequence of proposition (1.2). The projective
limit Q_!!! Z/pnz offers the advantage of being dearly a ring. In fact, it i€ a
subring of Ihc direct product 1 Z/ pnz where addition and multiplication
are defined componentwise. We identify ZI' with MIlt z pnz and obtain the
ring of p-adic integers Zr.

Since every element f E Q/J admits a representation

with g E Zp, addition and multiplication extend from Zp to Qf! and Q,, becomes
the field of fractions of Zp.
In Zp, we found the rational integers a E Z which were determined by
the congruences
a =ao+alp+ +au-w' 'mod p"

0::Sa; < p. Making the identification
z,, = full zpyz
the subset Z is taken to the set of tuples
(amodp, amodp?, amodv', e fiz;p''z
1=1
and thereby is realized as a subring of Z,,. We obtain ij as a subfield of the

field Q/! of p-adie numbers in the same way.

Despite their origin in function-theoretic ideas, the p-adit: numbers live up
to their destiny entirely within arithmetic, more precisely at its classical heart.
the Diophantine equations. Such an equation

F(x1, . X —O0

is given by a polynomial F  7.:[Xye--, Xyl, and Lhe question is whether
it admits solutions in integers. This difficult problem can be weakened by
considering, instead of the equation, all the congruences

F(.
By the Chinese remainder theorem, this amounts to considering the
congruences

—eee Xg0)=Dm<XIm.

F(Xy. ....X,,) = Omod /'

modulo all prime powers. The hope is to obtain in this way infonnation about
the original equation. This plethora of congrnences is now synthesized again into
a single equation by means of the p-adit: numbers. In fact, one has the
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(1.4) Proposition. Let f(x;, . x,, he a polynomial wirh integer cocni-
cicnts, and fix a prime number p. The congruence

F(x1,......,Xn):=Omodp*
is solv.Jbfe for arbitrary 11 2! | if and o1y if rhe equation
P(Xy,....,X,,)=0

is liiolv11ble in p-adic integers.

Proof: As established above, we view the ring Zp as the projective limit

2=z pze Tlz pz

" 1
Viewed over the ring on the right, the equation F = 0 splits up into
components over the individual rings il./ p“Z. namely, the congruences
Flxy, .., x)=0med p".
If now
(x1 Cxny = (AL xtt) e £ Z;,
with (xr+J)..EN E Zp =0 ZIp™L, is a p-adic solution of the equation
fi(-i11. 1,) =0, then 1he congruences are .€olved by
F(.I,:"‘l, .. X@">) :0Omod pv, u= 12

Conversely, letasolution (xId, ... , x¢vl) of the congruence

F(x1, ... , Xuw:: 0 mod p
be given for every 11 2:: I If the elemcnls (-i:f">,<N En:. Z/p"Z arc
already in \J_!!! Z/p"z, foralli = I, . n.1lhcn we have a p-adic solution

of the equation F = 0. But thiii is not automatically Ihe. case. Wr: will
Ihcrefore extract a subsequence from the sequence (xi"), ... , x,;v)) which
tits our needs. For simplicity of notation we only carry this out in the case
n = I, writing x., = xIv)_The general case follows ex:aclly lhe :same pattern.

In whalfollows, we view (xu) a., a sequence in Z. Since Z/pZ is finite.
there are infinitely many terms x,. which mod p arc congmenl lo the same
element y1 E Z/p7/,. llcnce we may choose a subsequence {xt)l of {x€J
such that
M=y;modp and F(x") =0modp
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Likewise, we may exuacl from |X011) asuhsequence Jx[2>lsuch Ihat
X€}) = y1 mod p-. and F{t@?) — 0Omod p’,
where \2 E 7/ pZZ evidently satisfies )2 = y1 mod p. Continuing in this

way, we obtain for each k 2: | a subsequence {x@kI j of [x;t-I } the lerms of
which satisfy the congruences

rtk/ —YA mod J|' und F(x;‘o) =0mod v/
for some JI E Z/ pkz such 1hal
Yk :=y4. 1 mod,-/" 1
They, define a p-adic integer y = (yJJAE:"I E 1 Z1;iZz = Zp satisfying
]

F(yl:) =0 mod 1I

forall k?:.1. In other words, F(y) = 0. [m}

10:xerci...e I fl. p-adic numher a — Lo..,a‘ " E QP is a rational numher if and
only if the sequence of digils is periodic (possibly with a finile siring before 1he first pcrit€.l).

1
Hint: Write pma =h+c , 2" 0@ n < p', 0=:cc< p*

Exercise 2. A p-adic integer a= a;, + a;p + a/|> + +-+ is a unit in the ring zn if

and only if o1 #- 0
F.xt:n.:ise 3. Show that the equation x* =2 ha> a solution in Z;
Excniise 4. Write the numher.- € and - € as 5-adic nurnhcrs.

t-::urci€y S. The field QP of ,-111Jic numbers has no aulomorphbms excepl Ihc
identity.

Exercise {i. How is the addition, suhtractioo. multiplication and division of rational
numbers rdlected in the representation by p-adic digits"*

§2.The p-adic Absolute Value

The representation of a p-adk: inlcger

m day+ap+ n‘:ﬂf +
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resembles very much the decimal frnction represcmation
<I{,+a,(, ) +a, () + <:a;<|
Hra(ygita(fof+ . o<asio,

of a real number between O and 10, But it does not converge as the
decimal fraction docs. Nonetheless, the field Qr> of p-adic numbers can
be constructed from the field Q in the same fashion as the tield of real
numbers IR. The key to this is to ruplm.:e the ordinary absolute value by
a new "-p-adic” absolute value | Ip with rcsper..:t to which the series (1)
converge so rh:H the p-adic numbers appear in the usual manner as limirs
of Cauchy sequences of rational numbers. This ap11roach was proposed hy
the Hungarian mathematician J. korsciia k. The p-adic absolute value | Ip is
defined as follows.

Leta= | .h, ¢ E Z be a nonzero rational number. We extract from h and
from ¢ as high a power of the prime number p as possible,

@ a=p“‘!!_

and we put

o (b'c.p)=I.

lalp= ph]

Thus the p-adic value no longer measures the siz.e of anumbera € N. Instead
it becomes small if the number is divisible by a high power of p. This
elahorates on the idea suggested in (1.4) that an integer has to be O if it is
infinitely divisible by p. In particular, the summands of a p-€dic series

aa+(11p+a2p2+- fonn a sequence converging to O wilh respec! to | |,,.

The exponem m in tOC representation (2) of the number a is denoted
by lip(a). am.I one puls fonnally 11,,(0) = oo. This gives the funelion

vy, :Q----+ ZUloo),
which is easily checked to satisfy 1he propcnics
1) vp(() = 00 <=>a= 0,
2) v..(ah) = vi,(a) i, (b),
3) vpath):=: min{vp(), I'p{h)},
where.r + 00 = 00, oc + 00 = i and 00 > x, forall x E Z. The funcrion

vp iscalled lhc p-adic exponentia,l-aluation of 1Q. The p-adic absolute value
is given by

1, Q€@ R, ai— lalp=p “@<u>.
In view of 1), 2), 3), it satisfies the conditions of a norm on Q:
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1) lalp=0{=:::}a=0,
2) labl, = lal,lbl,,,
3) 1Q+ hi;,::: max/lal;,- Ihip) .S lal;, + Ihip-

One can show that the absolute values | Ip and | | essentially exhaust
all norms on Q: any further norm is a power | 1; or | I', for some real
numbers > 0 (sec (3.7)). The usual absolute value | | isdenoted in this

context by | Ix® The good rea:;;on for this will he explained in due course. In
conjunction with the absolute values | /p, it satisfies the following imprnlant
product formula:

(2.1) Proposition, For every rntional number a #- 0, one has
TTlalv = L
P

where p varies over all prime number.€ as well as the symbol oc.

Proof: In the prime factorization
a=t N pr
p/=
of a, the exponent v,, of pis precisely the exponential valuation v,,(a) and
the sign equals The equation therefore reads

n=
a=_I_TT I,
lal:xi p1= lal/J
so that one has indeed TTI'lalp = I. O
The notation for the ordinary absolute value is motivated by the
analogy of the of rational numbers Q with the rational function field

k(t) over a finite field k, with which we started our considerations. Instead
of :Z, we have inside k(t) the polynomial ring K[rJ, the prime ideals p -1- 0 of
which are given by the monic irreducible polynomials p(t) € k[tl For every
such p, one defines an absolute value

11,:k(nN~IF:
as follows. Let f(t) = ;112 9(t),h(t) E k[tl be a nonzero rational function.

We extract from i?(t) and h(l) thehighesl po.€sible power of the irreducible
polynomial p(t),

. £ -
fiy = pi)” ::’;(T (gh.opy=1.
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and put
vu(f) =m, Iflp =q;"uin,
where (p = @"P, du being the degree of the residue das€y field of p over k
and q a fixed real number> 1. Furthermore we put viu(O) = oo and 1OIp =0,
and obtain for vp and | Ip the same conditions 1), 2). 3) as forvp and | Ip
above. In the case p = (! - a) for a Ek, the valuation vu( 1) is dearly the
order of the zero, resp. pole, of the function f = f(t) att = a.
But for the function field t..(1). there i5 one more exponential valuation

V. k() @ZU{oo}.

namely
vex( /) € deg(h) - deg(g),

where f = f -1- 0, th  E t.[r]. It describes the order of zero, resp. pole,
of f(!) at the point at inllnity ex, i the order of zero, resp. pole, of
the function f(lI/ t) at the point t = 0. Il is associated to the prime ideal
p = (/1) of the ring k[I/tj £ /.(f) in the same way as the exponential
valuations Vy are associated to the prime ideals p of A.[t]. Putting

1l = a0

the unique factorization in k(t) yields, as in (2.1) above, the fonnula

where p varie5 over the prime ideals of kit] a€ well a€ the symbol co, which
now denote” the point at infinity (sec chap, I, g14, p. 95).

In view of the product fonnula (2.1), the above consideration shows that
the ordinary absolute value | | of Q €hould be thought of as being associated
to a virtual point at infinity. This point of view justifies the notation | 1™
obey€y our constant leitmotiv to study number" as function® from a geometric
per€pective, and it will fulfill the expectations thus raised in an ever growing
and ama.dng manner. The decisive difference between the absolute value
[ and the ab€olute value | 1X, of k(t) is, however, that the fomler
i@ not from any exponential valuation vp attached to a prime ideal.

Having introduced the p-adic absolute value | Ip on the field :JJ!, let u€
now give a new definition of the field of p-adic number€p. imitating the
construction of the field of real numbeVi. will verify afterwards that thb
new, analytic construction does agree with Hensel'@ definition, which was
motivated by function theory.
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A Cauchy sequence with respect to | 1, is by definition a sequence
{xn) of rational numbcr5 such that for every + > 0, there exists a positive
integer n, satir,fying

Ixn-Xmlp <F  forall n,m ::no.
Example: Every formal series
L alp”, 0:Sa,<p
v=0

provides a Cauchy r,,cquence via its partial sum€
s1
Xn =, @avp".

because for N> m one has

n—1 ) 1
1Xn = Xmlp = | 2 ap' [, < max {lavp"l,} < 17'

mev<n

A sequence /xn\ in Q is called a nullsequence with respect to | II' if
IxnIft is a sequence converging to O in the usual sense.

Example: 1. p,p? p'_

The Cauchy sequencer, fom1 a ring R, the nullsequenccs fom1 a maximal
ideal m, and we define afresh the field of p-adic numbers to be the residue
class field

Q.. ,&RIM.
We embed Q in 1Q-i,, by associating to every element a E Q the residue
class of the constant sequence (a, a, a. .). The p-adic absolute value | 1p

on Q is extended to Q// by giving Ihc clement x = Ixnl mod m E R/m the
absolute value

Ixlp := }@@Ixnlp E IR.

This limit exists hecause {Ix.lp] is a Cauchy sequence in IR, and it is
independent of the choice of Ihc sequence Ixn) within it€ clags mod m
because any p-adic nullsequence { y,,} Em satisfies of course}€ IYn If! = 0.

The p-adic exponential valuation Vp on Q extends to an exponential
valuation
wp i Q, e +Z U {o0).
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o

In fact, if x E Q/! is the class of the Cauchy sequence /X;;) where X, ci=-
then

Vp(i,) = -log// Ix,1/!

either diverges to oo or is a Cauchy sequence in Z which eventually must
become constant for large n because Z is discrete. We put

() = "]ip;nc vplxn) = vp(xy) forn > ng.
Again we find for all x E Qr, that
lxlp = Pir”ml

As for the field of real numbers one proves the

(2.2) Proposition. The field Q/J of p-adic numhern is complete with respect
to the absolute value | Ipe i.e., every Cauchy sequence in QI' converges with
respectto | Ipe

A"> well as the field IR, we thu:; obtain for each prime number p a new
field QP with equal right<, and standing, so that Q has given rise to the
infinite family of field:;

Q@ @3, Qs, @3, Quis --ov Qo =R

An important special property of the p-adic absolute values | Ip lies in
the fact that they do not only satisfy the usual triangle inequality, but also
the @tronger version

[x + ylp < max{ x|, |y[p)

This yields the following remarkable proposition, which give:; u€ a new
definition of the p-adic mteitn.

(2.3) Proposition. The set

Zp =

v e @yl lxlp <1}

isa.@uhring of Q,. Itis the clo.@ure with rc@pect to | 15, of the ring Z in the
field 1Q,,.
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Proof: That zp ii. clo5ed under ad<lilion and multiplication follows from
Ix+ylp::Smax{IxI".1Ylp} and 1,-yl,,=Irl;,lyl"-

If {x,i} isa Cauchy :;cquence in Z and x = }ioxn, then Imli' ' 1 implies
also Ixli* _ I, hence x E zp, Conversely, let\ = /@.n@/n e zp, fora
Cauchy sequence {x,,} in IQ. We saw above that one hai,, IXI/J = Ix,,1,, _::1
for n - no ie. x* :0— with a,,h,, € Z, (h,.p) = 1. Choosing for each
n == no a 1solution yu, E :7. of the congruence h,y;; = an mod p*! yield"
IX, - Ynlp :S? and hence x = }i@Yu, so thal x belongs to the closure

@z O

The group of units of zp is obviomly
zy ={xeZp|lxl, =1} I
Every clement x E QI;, admits a unique representation
r=pmu withmEZanduEZ€,-

For if =mE Z then Wy =0, hence Ixp-mifl = I, i.e.,
u= € Z;,. Furthermore we the

(2.4) Proposition. The non7em ideals of the ring Z1, arc the principal idcal.s

@zp ={x EQI'l vp(x)
withn::_0, and one ha@
Tpl "Ly = L/p"L]

Proof: Let a -1- (0) be an ideal of 25, and x = pmu, u E Z;,, an element

of a with smallest possible m (since :S 1, one ha@ m =:_0). Then
a = because = p'u E a E ?,;, implies n ::i_ m  hence
y= The homomorphism

p— + Zplp“Zp, a€ amod p''Zp,

has kernel p''Z and is surjective. Indeed, for every x E 2;, there exish
by (2.3) anaE Z such that





x
a
o =
pr !
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i.e, vp(X - a) ::n, therefore x - a E pnzP and hence x =a mod pnzf!. So
we obtain an iwmorphism

Lp/p Ly = Lfp ] m}

We now want to establi€h the link with Henscl's definition of the ring Z1,
and the field QI' which was given in §1.There we defined the p-adic integers
as formal serie5

Y ap'. 0<a, <p]
=0
which we identified with sequences
“fn =Sn mod pn E Z/pnz. 1=12,

Wheres,, was the partial 5Um

-l

Se= 3 ayp"
=0

These €equences comtitutcd the projective limit

IL.m Zlpnz = { (xn)nE'@, En  Z/p"Z | Xn+1 @ Xn}

u 101
We viewed the p-adic integers as elements of this ring. Since

Zp/p"Ly = T/ L]

\\-e obtain, for every n 2 1, a <,ur:jective homomorphism

z, @Z/p"Z.

It i5 clear that the family of these homomorphism€ yields a homomorphi€m

It is now po@®@ible to identify both definitions given for Zp (and therefore
also for Qp) via the
(2.5) Proposition, The homomorphism

Zp----t lin ZIptz

is an isomorphism.
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Proof: If x E Zp is mapped 10 zero, this means thal x E p“Z,, for all n "
ie, Ixlp.S —j;nfor alln € I, sothat Ixlp = 0andthus x = 0. This shows
injectivity.

Anelementof € Z/ p1Wis given by a sequence of partial sums

1
sn= Lawpv. 0:Sav < p.
o

We saw above that this sequence is a Cauchy sequence in 7.3, and thus
converges to an element

x=L a,p* E7-/
1=0

Since

one ha€ X = 5, mod p" for all n, ie., r is mapped to the element of
€ Z/p™if, which is defined by the given sequence (smncN- This shows

surjectivity. o
We cmpha<;ize that the elemcnh on the right hand side of the isomorphism

2, -+ @ 2pZ

are given formally by <;cquences of partial sum,;

"
S, = T_ a,pv, fi= 1.2,.
=0
On the left, however, these <;equences converge with respect to the absolute
value and yield the clements of Zr in the familiar way, as convergent infinite
serie@

= Lalp
\=0

Yet another, very elegant method to introduce the p-adic numbers come€
about a: [ollows. Let Z[IXI] denote the ring of all fonnal power serie@
1 a with integer cocfllcicnts. Then one has the

(2.6) Proposition. There is a canonical i€omorp/Ji.@m
Z,, € ZIXI(X - p.
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Proof: Consider the visibly surjcclive homomorphism Z[[ X]] -+ Zp which
to every fonnal power series L:=oavXv associates Ihc convergent series
L@=a,pv. The principal ideal (X - p) clearly belongs to the kemel
of this mapping. In order to show that it is the whole kernel, let
f(X) = L:=0a,X" be a power 1, eries such that /(p) = L€»a,,p" = 0.
Since Zp/p"Zp Z/p*'Z, this mcani,, that

ao+alp+--++an-1Pn-1 a=Omodp**

forall n. We put, for n

h' 1= l@+alp+e +a,-p").
Then we obtain successively
ao= -pho,
a1 = ho- phi,
a2=hl- ph2 etc.

But thi5 amounts to the equality
(uo+alX +a2X2+ + ) = (X - p)(ho+h1X +h2XZ+« «),
i.e., f(X) belongs to the principal ideal (X - p). [m]

Exercise 1. Ix - vii' ' 110, . Lely1- -t
1<:xercise 2. Let n he a natural number, n =a,,+a,p +---+u,..,p" 1 its p-atic
expan€ion, with OS 11, < p. and 1 = ao+a1-+-*-+a,_1. Show that 11;,(n!) = 0

Exercise 3. The \equence I. -ftj-l‘tV TIY, ... does; not converge in QI'. forany p.

rxercise 4. Let & € [+ piiy,, and ot @ = dg +a p +ayp* +-- - 1 be a p-adic integer,
nd write s, = ao + @ p + -+ +a,p"'. Show that the sequence & converges
© & number &* in 1 + pZ,. Show furthermore that 1 + pZ, is thus turned into a
multiplicative Z,-module.

Exercise 5. For every a E:f, (u.p) = |, the ,equence {al"),EH converge€ m Q.
Exercise 6. The fields QI ‘and a:_t, ure notisomorphic. unle\ p = g.

Exercise 7, Tlle algebraic clo@ure of Q\, ha€ mlirnte degree.

Exercise 8. In the rmg :f.,,[X]] of formal power @cries 3"« X" over Z,,
one ha€ the following division with remainder. Let .¢ e Z,[|X|| and let

j(X) =ao+aiX +---such that pla, for v =0 n- L, but pta, Then one
may wnte in a umquc way

)i=qf+r.





where q E Z,1IX]], and e Z3,[Xl is a polynomial of degree€11- I
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Hint: Let r he the operatorz (3% b, X") = 30, b, X*™".| Show that U(X) =
= r(f(X)) aunitin Z,[[X]}and wiite f(X) = pP(X)+X"U(XI
apolynomial P(X) ofdegree t11- | Show that

S P
aeO= VV) Lo ) =10

1 a well-defined power €@enes m Zi,[[X]] such that r(qj) = r(g).
Exercise 9 (p-adic Weierstrass Preparation Theorem). Every nonzero power €eric€
fx) = € Z,[X1]
admits a unique repregpentation
i(X) =pI'POOUX).

where U(X) 1e a unit m Zpl[X1J lind P(X) E Zr[X] is a monic polynomial
satisfying P(X) "= X" mod p.

§ 3. Valuations

The procedure we petformed in the previous section with the field QI in
order to obtain the p-adic numbers can be generalized to arbitrary fields using
the concept of (multiplicative) valuation.

(3.1) Definition. A valuation of::1 held K is a function

enjoying the properties
(i) IxI€0,and IxI=0€ x=0,

(i) Ixyl € IxIIYI,
(iii) Ix+ yl xI + LVl "triangle inequality”.

We tacitly exclude in the sequel the case where | | is the trivial valuation
of K which satisfies IxI = I for all x -I- 0. Defining the distance betwtx€n

two points X, y EK by
d(x.y)@ 1,-yl
makes K into a metric space, and hence in particular a topological space.

(3.2) Definition. Two valuation.€ of K are called equivalent if they define





the same topology on K.
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(3.3) Proposition. Two valuations | |1 and | 1, on K are equivalent if and
only if there exists a real numbers > 0 such Iha/ one has

forallx EK.

Proof: If | 11 =1 11,withs > 0,then | i and | 12 are obviomly equivalent.
For an arbitrary valuation | | on K, the inequality Ix| < | is tantamount to
the condition that \xn)""'l converges to zero in the topology defined by I I.
Therefore if | 11and | 12 are equivalent, one has the implication

Ixly <1 = |xl2< |

Now let E K be a fixed element satisfying lyly > I. Lett EK, x f. 0.
Then = 1YI" for @ome a E JR. Let m,/n; be a sequence of rational
numbers (with > 0) which converges to a from above. Then we have

IXIL = Iylf < hence

xn, 12< 1,

so that IxI2 =S 1YI;,"" and thu€ IxI2 =S 1Y12- Using a sequence m,/n,
which converge<, lo a from below(*) tells us that Ixl ::_ lyl€- So we have
Ixlz = lyl@. Forall x e K, x .0, we therefore get

logixll  logl_vi1

log 2= logIXI2 = s,
hence Itl1= Itl;. But lyl1> | implies 1YI2 >!,hences> 0. rd

The proof shows that the equivalence of | 1; and | 12 is abo equivalent
to the condition
xl <1 = |xl2 <1
We use this for the proof of the following approximation theorem, which
may be considered a variant of the Chinese remainder theorem.

(3.4) Approximation Theorem. Let1 11, .... I 1,be pairwise inequivalent

valuations of the field K and Jet ay, .an e K be given elemcms. Then
foreveryc > 0 thereexistsanx £ K such that

N-al; <t foraldi=]1,
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Proof: By the above remark, since | 1, and | 1,, are inequivalent, there
exif>ts @ E K such that lall < | and laln 2: I. By the same token, there
exists /3 EK  such that 1.Bin< 1and 1.811?: I. Putting y = /3/a, one tindi>
IYlL> 1 and IYIn < I
We now prove by induction on n that there exi&ts z E K such that
IzIl > 1 and 1:13< | forj=2,
We have just done this for n = 2. A5.rnme we have found z E K safr,fying
I1zI1=1 and Izl,<l for}=2..... ,n-1

If I=In .:S 1. then zmy will do, form large. If however Izl,, > 1, the sequence
Im = z%Y(1 + z™) will converge to | with respect to | |z and | In, and to O
with rc@pect to | 12, ... , 1 In-1. Hence, form large. Imy will suffice.

The sequence zm /(I + zm) converges to | with respect to 1 11 and to 0
with respect to I 12 . I In- For every i we may construct in this way a z;
which is very do€e to | with respectto | li. and very do€e to O with respect
tol 1, for j-=fai. The element

x=mz +-- +u"z,,|
then satisfie€p the statement of the approximation theorem. a

(3.5) Definition. The valuation I I is called nonarchimedean if Inl stay<;
bounded. for all n E N. Olhcrwise it is called archimedean.

(3.6) Proposition. The valuation | | /< nonarchimedeall if and only if it
sutisfics the strong triangle inequality

1, + yl"max/ 1,1, Il}.
Proof: If the strong triangle inequality holds, then one has
fal = {14 +1]1 =1

Conversely, let [#] .:SN forall n E.N. Let xy EK and suppoe Ixl 2:. lyl.
Then |x{"{y|"~" £ IXI" forv 2:0 and one gets

eyt @ L 1C) Iyt @ e + i,

hence

Ix+ yl .:S N1+ n)ll”l,-l = N11”(1 + n)“” max\ ]xi. IY1),

and thus Ix+ yl .:S max/L.rl. lyl} by Jelling n--+ oc. 1J





93. Valuations 119

Remark: The strong triangle inequality immediately implies that

IxlfclYl = 1,+.vi@max/IxI-IYI).
One may extend the nonan:himedean valuation | | of K to a valuation of
the function field K (t) in a canonical way by setting, for a polynomial
f(f)=ao+alt+ +al11t—,

Ifl @ max/la.,l, ..., la,l)

The triangle inequality If+ RI :S max{Ifl. Li::-1) is immediate. The proof
that Ifgl = I/ lIMI is the same as the proof ofGaur..s's lemma for polynomials
over factorial rings once we replace the content of f in this lemma by the
absolute value I/1.

For the field Q, we have the usual absolute value | 1"°= | I. thir.. being
the archimedean valuation, and for each prime number p the nonarchimedean

valuation | Ip- Ar..a matter of fact:

(3.7) Proposition. Every valuation of Q is equivalent to one of the valua-
tiom | 1p o -

Proof: Let Il Il be a nonan:himedean valuation of Q. Then Iinll =
111+ «++ 111 .S |, and there ir..a prime number p such that 1IPII < | because,
if not, unique prime factorization would imply I\l = | for all x E Q*. The
set

n@ laezlllal < 1)

ir. an ideal of Z satisfying pJ', £; a#- Z, and since pZ is a maximal ideal,
we have a= pZ If now a E Z and a = hpm with pf h, so that hf/. a. then
uhu = 1and hence

llall = 11p1™ = laiy]
wheres= - log 1IPII/ logp. Comcquently |l 1 is equivalent to | Ip-
Now let Il Il be archimedean. Then one has, for every two natural numbcrr..

11m > |,
limlli/logm = linllVlogn

In fact, we may write

m =ao+aln+: Iurnl

where a; E {0, I, ,n- I\ and nr _s m. Hence, observing that
r .S logm/logn and llall =111+ --+111 .:Sa, 11111 .S 11, one gets the
inequality

logm
HImlL:SLla,I-nll* SL[laill - 111111 S(W m%u)n'llnlll"gm/logn7
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Substituting here nl for m, taking k-th roots on both side€p, and letting k
tend to oo, one finally obtains

lImll .:s Inl*%miogn_ or  [ImII**¥gm.:s lInllttad
Swapping m with n gives the identity(*)- Putting ¢ = 111111%0gn we have

Iinll = ¢y, and putting ¢ = €' yields, for every positive rational number
x =a/b, .
lIrll = estog, = IxI
Therefore Il 11 is equivalent to the usual absolute value | | on Q. ]
Let | | be a nonarchimedean valuation of the field K. Putting

v(x) = - logIx! for\-i=-0. and u(O) = oo,
we obtain a function
VIK --een +RU{oo}
verifying the properties
(i) v(_t) =00 =0,
i) vixy) = v Fv),
v(x +y) 2. min{v(x), v(y)},
where we fix the following conventions regarding element€ a £ IR and the
©ymbol 0o: a < oc, a+ 00 =X, 00+ 00= o0.

A function v on K with these properties is called an exponential
valuation of K. We exclude the case of the trivial function t(x) =0
for x f. 0, v(O) = 0o. Two exponential valuations v, and v, of K are called
equivalent if v; = sv,, for some real numbers > 0. For every exponential
valuation v we obtain a valuation in the sense of (3.1) by putting

IXI = gqvoy
forsome fixed real number g > 1. To dislinguish it from v, we call |
an a@sociated multiplicative valuation, or absolute value. Replacing v by
an equivalent valuation sv (i.e., replacing q by g =q) changes | | into
the equivalent multiplicative valuation | I'. The condition€ (i), (ii). (iii)
immediately imply the

(3.8) Proposition. The subset
oo (xEKlvece O} @ {xekl1'Icey
is a ring with group of units

o & xex v @0} @{xex [ v & 1}

and. the unique maximal ideal

p@ e Klve>o0} @ e Kliti<I}
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0 j; an integral domain with field of fractions K and has the property that,
for every x £ K, either i E 0 or.c ' E 0. Such a ring is called a valuation
ring. Its only maximal ideal isp = {x £ 0 I x-* <f. 0). The field o/p is called
the residue class field of 0. A valuation ring is always imegrally closed. For
if x e K isintegral over (), then Ihere is an equation

XN +aix"-t +--++a,, =0

with a, E 0 and the hypothesis x .j. a, <,0 Ihat x-* £ o, would imply lhe
contradiction x = -a1- a2x-1- + - a11(x1)"!Ee o.

An exponential valuation 1- i5 called discrete if it admits a mrnllest
positive value L In this ca€pe, one finds

V(K*) =sZ.
Il is called normalized if s = I. Dividing by ¢ we always pass to a
nonnalized valuation without changing the invariants Having done

50, an clement

s E0 wch that v(r) =1
is a prime element, and every element., E K* admits a unique rcprc€entation

with m € z and u E For if v(x) = m, then v(, JT-m) = 0, hence

(3.9) Proposition. Ifv ha di&crete exponential valuation of K, then
0@/XEKIV(x)2>0}
is a principal ideal domain, hence a (foc:rete valuation ring (.€cc I, (11.3)).
Suppose 1- is nolmalized. Then the non7ero idcafa of o are given by
p"=nno=/xEKIv(x):::_n}, n::_0,
where rr is a prime element, i.e., i*(n) = 1. One has

pripn+l mzoalp.

Proof: Let a #- 0 be an ideal of o and x -/= 0 an element in a with
smallest poSsible value v(x) =n. Then x = unn, u E 0%, so that "o £ a.
If y = FJTm E a is arbitrary with F E o+, then m = v(y) 2. n, hence
y = @ n* ")r" E 1o, so that a= rr*'o. The isomorphism





pn/pn+l :zioofp

remits from the correspondence arr" r-+ a mod p.
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In a discretely valued field K the chain
02p2p*2p2

consisting of the ideals of the valuation ring O forms a basis of
neighbourhoods of the zero element. Indeed, if v is a nomtalized exponential
valuation and | I=  g-1'(q > I)an associated multiplicative va\ualion, then

p"é{xEKII,I<|0)

As a basi5 of neighbourhoods of the element 1 of K*, we obtain in the
same way the descending chain

=l 2urn2u(?-2
of rnbgroups

u(ID=1+pri={-EK*lI-xI<€).  n=O,
an-

of o*. (Observe that | +p*li€ closed under multiplication and that, if x & U ),
then so is x-* because 11 -x-'1 = Ixl-!Ix -11 =Il-xi<g} 10 u(n)
is called then-th higher unit group and u(1J the group of principal units.
Regarding the successive quotients of the chain of higher unit group:;., we

have the

(3.10) Proposition. v-uan - (0fi:n* iand urni;un+y - of/p, for
niiL

Proof: The fir&l isomorphism is induced by the canonical and obviously
surjective homomorphism

..... + (0/p™)*, U -+ u mod p".

the kernel of which is u(nl. The 5econd isomorphism is given, once we
choo&e a prime element i, by the surjective homomorphism

ur=l+rr'*o-+o/p. I+rr"ai -------+amodp,

which has kernel u*+!. 0
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Exercise 1. Show that |z] = (z£)"? = AN.c1IR(z)I is the only valuation of C which
extends the ahsalute value | | of R

Exercise 2. What i€ the relation between the Chinese remainder theorem and the
approximation theorem (3.4)?

Exerci€pe 3. Letk bea field and K = k(t) the function field in one variahle. Show that
the valuation€ Vp as€ociated to the prime ideals p = (p(tJ) of k[t], together with the
degree valuation v.,._,. are lhe only valuations of K. up to eqrnvalenee. What are the
residue das€ field€@?

Exercise 4. Let o he an arbitrary valuatlOn rmg with field of fraction€ K,

and let I' = Then I becomes a totally ordered group if we define
rmodo*::y ostomean.x/yEO.

Write I additively and show that the function

> I'U{ex},
Vv(0) = ex:. V() = x mod o+ for x EK', satisfies the conditions
1) v{x) }x =0,

2) V(ry) = v(x) + v(r),

3) v(r +y) ;== min{v(r), v(y)).

v is called a Krull valuation.

ViK-:

§4. Completions

(4.1) Definition. A valued field (K, | 1) is called complete if every Cauchy
.@equencc [aulnect€ in K convergesto an element a E K, i.

lim |a, —a| =0.
Py

Here, as usual. we call {a,;3,,Er, a Cauchy sequence if forevery F > 0
there exists N € N such that

la,-aml<F  forall n.m:=:N.

From any valued field (K, | 1) we get a complete valued field (R.1 I) by
the process of completion. Thi€ completion is obtained in the same way as
the field of real numbers i€ com,tructed from the field of rational numbers.
Take the ring R of all Cauchy sequences of (K, | 1), consider therein the
maximal ideal m of all nulbequem:es with respect to | 1, and define

fi@R/m.
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One embeds the tield K inlo T by sending every a E K to the class of the
constant Cauchy sequence (a.a.a, ... ). The valuation | | is extended from
Ktof by giving the clement a E R which is represented by lhc Cauchy
sequence {anjnen the absolute value

lal = }@mx lan|.
This limit exisb because | 1aul - lam11 .:S lay-  am| implies that lan | is a
Cauchy sequence of real numbers. As in the case of the field of real numbers,
one proves that fis complete with respect lo the extended | |, and that each

a e T isa limit of a sequence {al‘l) in K. Finally one proves the uniqueness
of the completion CR. I 1): if cf'.I N isanother complete valued field that
contains (K, 1 1) a" a dense subfield, then mapping

gives a K-isomorphism o: R-+ R such that lal = laal'

The fields IR and C are the most familiar examples of complete fields.
They are complete with rc5pccl to an archimedean valuation. Amazingly enough,
there are no others of this type. More precisely we have the

(4.2) Theorem (Osrmowm). LetK be a field which i complete with respect
to an an:himcdean valuation | 1. Then there is cm isomorphism er from K
onto IR or C satisfying

lal = laal' fora/d aEK.

for some fixed s E (0, I].

Proof: We may assume without 10'-5 of generality that R <:; K and that the valuat'.on
I I of K i€ an extenyion of the usual absolute value of IR. In fact, replacing | |
by | 1€ * fora5Ultable s > 0, we may assume by (3.7) that the

restriction of 1 | lo Q isequal to the usual absolute value. Then taking the
closure Q in K we find that ij is complete with to the restriction
of | ltoij, in other words, it is a completion of | I).In of the
uniqueness of completions, there is an isomorphi<;m a : IR -+ such that

lal = I(Jal as required.

In order to prove that K = IR or = C we 5how that each @ E K satisfies
a quadratic equation over R.. For this, consider the continuous function
f :C -+ IRdefined by

fFE =18 - +DE+
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Note here that z + z, zz E IR € K. Since :li!1;, /(z) = oo. f'(z) has a
minimum m. The set

s@[ECII<,J@m)

i€ therefore nonempty, bounded, and closed, and there b az ES €uch that
Izol 2: 1:1 forall z ES. It suffices to show that m = 0, because then one has
the equation e- (zo + Zo)@ + zoZn = 0.
Assume m > 0. Consider the real polynomial

g-(X) =x2- (z.+Zo)i+:0Z0+¢

where O < 1 < m,  with the roots EC. We have ::121 = zoZn+F,
hence 1z11 > Izol and thus

(zi) > m.

For fixed n E N. consider on the other hand the real polynomial
n
609 @[50 -ST - (-el"@ TT<X -aye TI<X - o)
1d =

with roots a o It follows that Ci(zi) = O; @ay, :, = a We
may substitute € E K into the polynomial

>
G()?,=1](X? (a1 +CX,)x +a,ii,)

and get
IG<s>I'0Dm,r<a,):C I(a,)mz"-'-

From this and the inequality

IG(@)! .:S 12~ (z0 +Zn)€ +z0Zol" + 1-cln = j(zoltr = mie L

it follow<€ that .f(ai)m?'*. 1 _:s (m" + rn)® and hence
LOD<=C w G2y,
T — mm
Forn - oo we have .f(a;) =::: m, which contradicts the inequality /(a;) > m

proved before. D

In view of o\11wwik1s theorem, we will henceforth restrict attention to
the ca€pe of nonarchimedean valuations. In this ca€pc it b usually expedient -
hoth with regard to the €ubstance and to practical technique - 10 work with





the exponential valuations r rather than the multiplicative valuation5. So let v
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be an exponenlial valuation of the field K. It is canonically continued to an
exponential valuation fi of the completion R by setting

fo(a) = } @@V,

where a = }ééﬂu E R, au E K. Observe here that the sequence v(a.y
has to become stationary (provided a == 0) becauc;e, for n 2.: no, one
hasV(a - an)> f,(a), sothat it follow& from the remark on p.119

V(a,n = f@n - a+ a)= min{D(a, - a), V()| =ila).
Therefore it follows that "
(k*) =(K").|

and if v is discrete and normalized, then so is the extem,ion D. In the
nonarchimedean case, for a sequence {a,;,-+ to he a Cauchy sequence,
it suffices that a,+1 - an be a nullsequence. In fact, L:(arl- 2
min,,,,-1<.,{v(a;+; - am, By the same token an infinite serie€
conve@ges in R ifand only if the @cquence of its ICnns av is a nuilsequence.
The following proposition is proved exactly as its analogue, propo:,,ition (2.4),
in the special case (Q, vp)-

(4.3) Proposition. Ifo £ K, resp. 3 £ f, i, the valuation ring oft,, re.@p.
ofV, and p, re.@p. p, is the nrnximal idea/, then one h:1:,

3/p™ olp
and. if v is discrete, o11e has furthermore

B5/p" = ofy" for n= I|

Generalizing the p-adic expansion to the case of an arbitrary discrete
valuation v of the field K, we have the

(4.4) Proposition. Let R S; c' be a system of representatives for k = off
such that OE R, ,wd letn E o be a prime element, Then every x -=fa0 in K
admits a unique representation as a convergent series

x = nm(an +aln +a:(n:2 +e o0

wherea,; ER, a,-1=-0, mEZ.
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Proof: Let x = nlMy with u E 3* Since 3/P ;:: c/p, the class u mod P
has a unique representative a; ER, a -==. 0. We thm have u = a; + nhy,
for some hy E 3. Assume now that ao.  ,an-l E R have been found,
safo,fying

u=ao+alrr+ +an_,rrn--'+n"hn
for some hy; E 3, and that the a, are uniquely detennined by this equation.
Then the representative an € R of hn mod rrO E o
uniquely detennined by u and we have hn = E3.
Hence

u =ao+alrr+ +an-J.iTn-I +ann* +n'+'h,,+1

In this way we find an infinite series L0 a«.7r€ which is uniquely detennined
by u. It converges to u because the remainder tenn _;m+i bn+l tends to zero. O

In the case of the field of rational numbers Q and the p-adic valuation vi
with its completion Qp, the numbers 0, 1. .. p- | fonn a syStem of
repre@entatives R for the residue class field Z/ pZ of the valuation, and
we gel back the representation of p-adic numbers which has already been
discussed in 82:

X = pul(ao +alp +a2p2 + o),
where O :Sai < pandm EZ.

In the case of the rational function field k(t) and the valuation I'p attached
to a prime ideal p = (t - a) of kltJ (see S2), we may take as a system of
representatives R the field of coefficients A itself. The completion then turns

out to be the field of formal power series k((x)), x =t - a, consisting of
all fonnal Laurent 5crics

Oy =0 —a) @+ at—a) +alt—a)y +-),

with a; E kand m E Z. The motivating analogy of the beginning of thi€ chapter,
between power serie€p and p-adic numbers. thus appears as two
@pccial instances of the same concrete mathematical situation.

In§ 1 we identified the ring Z,, of p-adic integers as being the projective
limit €  Z/ p"Z. We obtain a similar result in the general setting of

valuation theory. To explain thi€y, let K be complete with respect to a discrete
valuation. Let O be the valuation ring with the maximal ideal p. We then
have for every n 2:. | the canonical homomorphisms
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and

olp @ olp’e op' @

This gives us a homomorphism

into the projective limit
© olp''={u)e fl o/p | a11(x,11) =x11).
n n=l
Considering the rings o/))* as topological for the tfocretc topology,

gives us the product topology on ne-i and the projective limit
€ Vv/pn become€) a IOpological ring in a canonical way. being a closed

subset of the product (see chap. IV, S2).

(4.5) Proposition. The canonical mapping

u

0 +€ olp

isan i. @omorpliism and a homeomorphism. The s;:1me is true for the mapping

a* - © o=un)_

Proof: The map is injective since its kernel is ne=1 pi = (0). To prove
surjectivity, let p=no and let R € 0, R 3 0, be a system of rcprcscmatives
of o/p. We saw in the proof of (4.4) (and in fact already in (1.2)) that the
elemenl€ a mod un E v/pn can be given uniquely in the fonn

a= a0 +a11T + +-- +an-117n1 mod pn,

1@ :€::1ER.Each elements E € o/pllis therefore given by a sequence

sp=dota T4 a7, n=12
with fixed coefficients a, E R, and il i€ lhu€ the image of the clement
x=}i@s, - L;=0a.n Eo.
The sets Pn = flvgen o/pv fonn a basis of neighbourhoods of the zero
element of T1;"."=; o/pv. Under Ihe bijection
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the basis of neighbourhoods  of zero in 0 is mapped onto the ba5i5 of
neighbourhoods P,,n € of zero in € o/pv. Thus Ihe bijection is

a homeomorphism. It induces an isomorphism and homeomorphi:;.m on the
group of unit5

t1esu(nd. m]

One of our chief concerns will be to study the finite extensions LI K of a
complete valued field K. This means that we have to tum to the question of
factoring algebraic equations

f(x)=all\"+an 1x'*.*+ +ao=0O

over complete valued Jicld&. For this, Hensel's seminal "lemma" i€ of
fundamental importance. Let K again be a field which is complete with
respect to a nonarchimedean valuation | I- Let ci be the corresponding
valuation ring with maximal ideal p and re:;.idue class field x = of/p.
We call a polynomial f(x) = a + aii + **++ a x" € o[x] primitive
if f(r) =ft.0 mod p, i.e, if

|fl =max{laol. ..., la,|} =1.

(4.6) Hensel's Lemma. If a primitive polynomial f(\) E o[xl admit.€
modulo p a factoriLation

f(x) =R()h(x) mod p
into relatively prime polynomia/8 g. h € kL], then f*(x) admih a factoriza-
tion

/(=) € g()h()
into polynomials g, h E ofxl .\uch that deg(g) = dcg(g™) and

g(x) =,if() mod p and h(x) = h(x) mod p.

Proof: Let d = deg(/), m= deg(,if), hence d - m ::_deg(h). Let go,
ho E o[xJ he polynomials such that mod p, ho = h mod p and
dcg(i;ro) = m, deg(hg) .:S d - m. Since = |, there exist polynomials
a(x), h(x) E o[x] satisfying ago + hho = 1 mod p. Among the coefficients
of the two polynomials |- goho and ago +hho - 1 E p[xJ we pick one with
minimum value and call it rr.
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Lel m, look for the polynomials g and h in the following fonn:
g:go+p1n+p2n2+
h =ho+qln +t12n% + -

- m. Wethen

where p,. q, E o[x] are polynomials of degree < m. resp.
determine successively the polynomials

1n-1=Ro+ puyT + - -+ + Pn 13-,

hn-1 =ho+ gln+---+q,,_1nn-l,
in such a way that one has

f = gn1hsy mod ”"I
Passing lo the limit as n -+ oo, we will finally obtain the identity f = gh.
For n = 1 the congruence is satisfied in view of our choice of ;. Lel us
aswme thal it is already e€tablished for some n € I. Then, in view of the relation
B =g+ Py hp=ha_ g’
Ihe condition on g,,.h11reduces to
F — gumthu1 = (8umidn + byt p)r” mod 77|
Dividing by n", this meam
8n-1Gn + o1 Py = oG + hapn = f mod 7,
where j@ = sr-nu- ffo-1hn- i) E oLxJ. Since goa +hoh = I mod x,
has
Roaf€+ hoh/11 = fn mod IT.

At this point we would like lo put gn = af;, and p11= hf;,, but the degrees
might be too big. For this reason, we write

h()fn(.r) = q(.,),:0(x) + P11(x),

where deg(p11) < deg(i;:-0) = m. Since =8 mod p and deg(Ro) = deg('{),
the highest cocflicient of ;o i€ a unit: q(r) E o[x] and we obtain the
congruence

go(afn + hog) + hodJ11 = 111 mod .

Omitting now from the polynomial af11+ hoq all coefficients divisible by :rr,
we get a polynomial g1 1such that goq11+ hop11= f,, mod :r and which, in view
of deg(.f) "::d, deg(g. =manddeg(hp, <(d- m)+m=d, has degree
d - m as required.
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Example: The polynomial xp-1-1 € Z,,1x] splits over the residue class field
z,,JpZp = IF,, into distincl linear faclors. Applying (repeatedly) Hensel's
lemma, we see that it also splits into linear factors over Z,,. We thus obtain the
astonishing result that the field !Qr> of p-adic numbers contains the (p- 1)-th
roots of unity. These, together with 0, even form a system of representatives
for the residue class field. which is clo5ed under multiplication.

(4.7) Corollary. Let the field K be complete with respect to the nonar-
chimedcan valuation |- Then, for every irreducible polynomial f(x) =
ao+ a;x + £ KIx] .\uch that aca" 0, one ha.@

Ifl @ max/laol-la,l)-

In particufar, an = 1 ,mda, E o imply that f E o[x ].

Proof: After mulliplying by a suitable element of K we may a%ume that
/ Eofx jand I/ | = I Leta be the first one among the coefficients
a0, ... , an 5uch that la, I = I. In other words, we have

FO) =X (@ + x4+ apx") mod p

If one had max{la,1,la.l] < 1, then O < r < n and the congruence would
contradict Hensel's lemma. [m]

From this corollary we can now deduce the following theorem on
extensions of valuations.

(4.8) Theorem. Let K be complete with respect to the valuation | I.
Then 1+ may be extended in a unique way to a valuation of any given
algebraic extension LIK. Thi!! extension is given by the folmula

lal = /| Nk @),

when LIK hi:IS finite degree n. In thi.€ case L i.€ :.igain complete.

Proof: If the valuation | | is archimedean, then by Ostrowski's theorem,

K =19 or C. We have = 2Z = 1zI? and the theorem is part
of cla55ical analysis. So let | be nonarchimedean. Since every algebraic
extension LIK is the union its finite subextensions, we may assume that

the degree n = [L : Kj is finite.
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Existence of the extended valuation: let O be the valualion ring of K and('.)
its integral closure in L. Then one has

O={ael|Nyka) eol

The implication a E O = Nl.w(a) E o isevident (see chap. I.§ 2, p. 12).
Conversely, lela EL*and NLw(a) E o. Let

f(x) = xd +a,1_ixd-l + =+ +0 E Kfxl

be the minimal polynomial of a over K. Then N1 =ari‘Eo, so that
laol::: |, i.e., a0 E w. By (4.7) thi;. gives f(x) E a e Cl

For the function lal = VINL1K(a)l, the conditions lal = 0 {=cc> a= 0
and la/31 =1all/31 are obvious. The 5trong triangle inequality

la+ #1:' max{ lal, |I}
reduces, after dividing by a or fJ, to the implication

lal::: 1€ la+ 1::: 0,
and then, by (*). toa EO = a+ | E 0, which i5 trivially true. Thus
the fonnula lal = YINL1da)l does define a valuation of Land, restricted

to K, it clearly gives back the given valuation. Equally obviously it has (.)
as its valuation ring.

Uniqueness of the extended valuation: let | I' be another extension with
valuation ring CJ' Let€p, resp.€', be the maximal ideal of O, resp. O" We
show that () c; ()'.Leta E(), () and let

f(x) = t* +alx"-'+- +ad

be the minimal polynomial of a over K. Then one has a1, .alEo and
a-'E @', hence | = -aj;a-'- - - al(a-})J £ ¢, a contradiction.
This shows the inclusion O ¢;: (). In other word5, we have that
lal ::: 1= lal' ::: | and thi:;. implies that the valuations | | and | I'
are equivalent. For if they were not, then the approximation theorem (3.4)
would allow us to find an @ EL such that lal:;: 1= lal'> 1. Thu5 | | and |
I"are equal because they agree on K.

The fact that L is again complete with respect to the extended valuation
is deduced from the following general result. C

(4.9) Proposition. Let K be complete with respect to the valuation I and
JetV be an n-dimemional normed vector space over K. Then, for any
, v, of V the maximum norm

v+ -+ xpull = max Ll ]
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is equivalent to the given norm on \I. In parlicufar, \I is complete and the
i.mmorp/Jism

K" — V. {xi . xa) — vt X,

is a homeomorphism.

Proof: Let vi. . vn be a basi5 and Il Il be the corre€ponding maximum
norm on \I. It suffices to show that, for every nonn | | on V, there exist
constants p, p' > 0 such that

PHxIl :: IxE s p'lixdl - forall t EV.

Then the norm | | defines the same topology on V m, the norm Il II.
and we obtain the topological isomorphism K=V, (xq, ... Xn)-2
x1vi+- +xuvn. Infact. Il 11 b transformed intotbemaximum norm on Kn.

For p' we may obviously take Ivji+ - + Iv,I. The existence of pis
proved by induction on n. For n = | we may take p = lvi1- Suppose that
everything is proved for (n - [)-dimensional vector spaces. Let

Vi=Kvl+ +Kv,_1+Kvir+ +Kv,,.

sothatV = V;+ Kv,. Then V, i5 complete with respect to the restriction
of | 1 by induction, hence it is clo€cd in V. Thus V, +v, is also closed.
Since Of/. LJ@=I (V; + 1¢1), there exists a neighbourhood of O which is disjoint
from U;*=lw1 + va),ie., thereexbb p > 0 suchthat

Iy + v, 2o p forall w, eV; andall i=1
Forx = x;vy+ ¢ +1,v, =-0 and Ix, I= max{Ix;1}, one finds
+v, + 2.p.
o that one has Ixl 2:. pix, 1= PIIXIl. [m]
The fact that an exponential valuation v on K a%ociatcd with | | extends

uniquely to L is a trivial consequence of theorem (4.8). The extension w is
given by the formula

1
wlo) = ‘;V(NL\K(U))

ifn = [L: KI< oc.
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Exercise 1. An infinite algebrail'. cxtcn€ion of a complete field K is never complete.

Exercise 2. Let X, Xy, ... be an infinite sequence of unknowns, p a fixed prime
number and 0. Show that there exist
polynomial€ ... 1 @uch that

WH(SN.S1,  )=W,(Xo.X,.. J+Wn(YO,Y1.....).

W/)(Po, P1, ... ) =Wn(XuX1....) W,(Yo.YL,
Exerci€e 3. Let A he a commutative ring. For a= (ag,a;-.....>.hn=(hg.hy-->.
a,,h,EA,put

a+ h= (Se(a h).8,(ah),...), a h = (Po(a h). Py@h),....).
Show that with thele operation\ the vectors a = (a,n;, form acommutatlve
ring W (A) with 1. Itisrnllcd the ring of Witt vectors over
Exercise 4. Assume pA = 0. For every Will vector a= (aya,, .. ) E W(A)
consider the "gho@t component@"
abt =W, (@) =a{+ pa('+ -+ pha

a well as the mapping\ V.F: W(A)----+ W(A) defined hy
Va= (0,an,l/1,...) and Fu= (u(.u(...
ly "trnm,fer" (" " in German) and "Frobeniu5" Show

called re@p:
that
(Va/™'=pa™-t1 and a" = (Fa)"i+ p"a,-

Exercise 5. Let A bea field of charactcrist)C p. Then V 1 a homomorphism of the
ve group of W(A) ;-iml Fis ;-iring homomorphism, and one ha\

\IFa= F\la = pa.

Exercise 6. If A 1 a perfect field of charactensllc p, then W(k) 1@ a complete
1.facrelc valuatlOn ring with residue cla@@ field L

§5. Local Fields

Among all complete (nonarchimedean) valued field5, tho@e arising as
completions of a global field, i.e., of a finite extension of either 1Q or 1€'p(t),
have the most eminent relevance for number theory. The valuation on rnch
a completion is discrete and has a finite residue da@# field, as we shall see
@hortly. In contrast to the global fields. all field€ which are complete with
respect to a discrete valuation and have a finite residue cla€ € field are called
local fields. For such a local field. the normalized exponential valuation is
denoted by Ip,and | Ip denote€p the absolute value normalized by

\X\p = (/-I'ph) _

where q is the cardinality of the residue class field.
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(5.1) Proposition. A local field K is locally comp,1ct. Its valuation ring O
is compacl.

Proof: By (4.5) we have 0 ;i @ V/j:)' both algebraically and topo-
logically. Since jilv/p"+1 :: op  (see (3.9)), the rings o/p" ayc finite,
hence compact. Being a clo<;ed subscl of the compact produs 5 1 o/p*
it follows that the projective limit € o/p*. and thu:;. o, i:;. also compact.
Forevery a E K, the set a+ c is an open, and at the same time compacl
neighbourhood, so that K is locally compact [m]

In happy concord with the definition of global fields a<; the finite extension:;.
of Q and IFp(t), we now obtain the following characterization of local field<;.

(5.2) Proposition. The local fields are precisely 1hc Jinite extensions of tlle
fields QP and IFp((t)).

Proof: A finite extension K of k = Q,, or k = F,((t)) is again complete.
by (4.8). with respect to the extended valualion lal =
which itself i<; obviously again discrete. Since K Ik is of finite degree,
so is the residue cla<;s field extension for if X1,.. ,Xu E K
arc linearly independent, then any choice preimage<; Xj. X, B K
is linearly independent over k. Indeed, dividing any nontrivial k-lincar
relation A1x1 +  + A11x11= 0, A, Ek, by the coefficient A, with biggest
ab<;olute value, yields a linear combination with cocflicients in the valuation
ring of k with | a:;.i-lh coefficient, from which we obtain a nontrivial relation
1ix1+  + 111X11= 0 by reducing 10 K. Therefore K isa local field.
Conver:;.ely, let K be a local field, v its discrete exponential valuation.
and p the charactcrislic of its residue class field k. If K has charactcri@tit 0,
then the restriction of 1:to IQ i<; Ctjuivalent to the p-adic valuation vp of Q
becau:;.c v(p) > 0. In view of the completeness of K, the closure of Q in K
is the completion of Q with respect to vp, in other words Q,, <; K. The
fact that K 1Qp i:;. of finite degree results from the local compactness of the
vector -pace K, by a general theorem of topological linear algebra (€pee 1181,
chap. I, *2, 11° 4. th. 3), but it abo follows from (6.8) below. If on the other
hand the characteristic of K is not equal to Lero, then it has to equal p.
In this ca:;.c we find K = K((t)), for a prime element t of K (see p.127),
hence IB'p((t)) <; K. In fact, if k = IFp(a) and p(X) E 18',[XJ <; K[X] i:;.
the minimal polynomial of a over Ff!, then, by Hensel'@ lemma, p(X) splits
over K into linear factor€. We may therefore view « a€p a @ublicld of K. and
then the elements of K Lum out to be, by (4.4), the Laurent series in | with
coefficients in k. ]
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Remark: One can show that a field K which is locally compact with respect
to a nondiscrete topology i!> isomorphic either to R or tC. or 1o a finile
extension of Qf' orlE'p((t)), i.e., to a local field (see [1371, chap. I, §3).

We have juSt seen that the local fields of characteriStic p are the power
series fields Fq((t)). with g =pf. The local fields of characteristic 0, i.e.,
the finite extensions K IQ\) of the fields of p-adic numbers Q) are called
p-adic number fields. For them one has an exponential function and a
logarithm function. In contrast to the real and complex case, however, the
fonner is not defined on all of K, whereas the latter is given on the whole
multiplicative group K «. for the definition of the logarithm we make use of
the following fact.

(5.3) Proposition. The multiplicative group of a local field K admit!> the
decomposition
K* = (Jf) X 1-1g 1 x 2AN

Here n i, a prime clement, (n) = /;r@ I/.. € Z\. q = #K is Ihc number of
clements in the residue class field k = o/p, and u(lJ = I+ p is the group
of principal units.

Proof: For every a E K@, one has a unique representation a = rrnu with
nEZ uE sothat K¥ = (rr) x tJ*. Since the polynomial Xg-I - I splib
into linear factors over K by Hensel's lemma, o* contains the group /.Lq- of
(q - !)-throots of unity. The homomorphism  -—+ K*, u 2 u mod p, has
kernel uwy and maps /-1 bijectively onto k+. Hence = et xuq_ O

(5.4) Proposition. For a p-adic number field K there is a uniquely
de/elmincd continuous homomorphism

log: K*--,,. K

1,uch that log p = 0 which on principal unils (1+1) E Ur!! is given by the

log(l +x) =

Proof: By 84, we can think of lhe p-adie valualion vp of qr= al> exlcnded
to K. Observing that v;,(x) > 0, so that ¢ = p"I''l > I, and pplvy _s v,
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giving vp(v) ;S € (with the w,ual logarithm), we compute the valuation of
the tenm, x"/v of the series,

xl') Inc Inv In(c"/v)
w(+ Twweeo- U,VWevin - ¢ =INp.

This show<, that xv /v is a nullsequcnce, i.e., the logarithm series converges.
It defines a homomorphi€m because

log((! +x)(I +y)) @ log(! +x)+log(l +y)
is an identity of fonnal power series and all serie€p in it converge provided
I+x,I+yEU(I_
For every a E K*, choo,;ing a prime element TC, we have a unique
representation
a=  TC'p(aw(a)(0Y),

where vp = evf' is the nonnalized valuation of K. w(a) E /1-q-, (a) € u(lJ.

As sugge@ted by the equation p = TCew(p)(p), we define log TC = -} log (p)
and thus obtain the homomorphism log: K* --+ K by

loga= vp(u) logTC+ log (a).

Il'is obviously continuous and has the property that log p = 0. If A: K* -+ K
is any continuation of log : ij(n -+ K such that A(p) = o, then we
find that A(s") = @ A" 1) =0 for each t E /L1 1. It follows that
0 = eA(TC) + A((p)) = eA(TC) + log(p), so that A(TC) = logTC, and thus
A(a) = vp(a)A(TC) +A({a)) = 1Jp(a) log TC+ log {a) = \oga, forall a E K*.
log is therefore uniquely detennined and independent of the choice of TC.
U

(5.5) Proposition. Let K 1Q1. be a p-adic number field with valuation ring
o and maximal ide:il p, and let po= i-,". Then the power .€eries

x2 \
exp(X)= Il+x—+-—+- +--,md log('+,)&,
21 31

yield, for n > -,;-=I-T, two mutually inverse isomorphi.€ms (and homeomor-
phisms)

|





We prepare the proof by the following elementary lemma.
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(5.6) Lemma. Letv= L'.¢oa, p', 0.:Sa, < p, be the p-adic expansion of
the natural number v E N. Then

1,
vp(vh) = s La;(p' - 1.

-l

Proof: Let [c] signify the biggest integer _:s c. Then we have

Lv/p]l = al+a2p+-e+a[/ %

fuip?l = a2 + +arp-?
a,
Now we count how many number€ 1, 2, ... , v are divisible by p, and then

by p2 elc. We find

vpvl.)=[v/pl+  +Lv/p,]J=al+(p+a2+ --+(pr-1+ --+Da,
and hence

G- WD = DarkGP B2+ -+ - Da. = Laagh .

i0

N}

Proof of (5.5): We again think of Ihe p-adic valuation ur of as being extended
to K. Then up = eu, is the normalized valualion of K. every natural
number v > I, one has the estimate

pan <-1--

v-1- p-1
foirf v = pav, with (v, p) = I and a> 0, then
¥o(W= __a < _la e |\ 000=_1
[ I — . 8 . o B —=w 1

For Vp()) > €: #-0, ie. Ip@2) >p L thi@ yields

1 1
rl (0)-1 U@ = VPR vPW) >(v- (- - ©) 90,
L p- | - |l

and thus I'p(log(l +2z)) = vp(:). For . >
into pn.

For the exponential serie€ Lén’ we compute the valuation€
vp(1". 1) as follow!,. Writing, for . > U,

1 log therefore mapl> uM

v=ao+ap+* +a.p, U_ra <p
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we gel from (5.6) Ihat
1 1
vp(v!) = - - z#a,(pl- D= - -(v-(uo+al+ -+a))).
p- | =0 p- 1
Putting sv = ag + <<+ a, thi5 becomes

Vi'(‘?):wp(x)-opI — oo~ oy o

p-1 p-1
Forvp(x) > ;=-T,ie, Vp(r) > @' lhis implies the convergence of the
exponential series. If furthermore x -/=-0 and v > 1, then one has

X' I -1 sy

V- |
V(@ -V.,.()=(V-Dvp(x)-@+p-=-T'>p--=--T2":.0.

Therefore vp(exp(x)- 1) = vp(x), i.e., forn > 7, exp maps Ihe group p't
into u(nJ. Furlhennore, one has for vp(x), >p & 1 that
explog(l+z)=I+z and logexpx=.t,

forthese are identiticf. of formal power series and all of the 5crics converge.
This prove,;, the proposition.

For an arbitrary local field K, the group of principal unitf> u(il is a Zp-
module (where p = char(K)) in a canonical way, forevery 1+x E U
and every z E Zr,, one haf. the power (I +x): E This is a con€pequence
of the fact that uair u¢*enhas order g" for all n (where q = #0/p - the
reason for this is that u¢i3;u¢i+1) € osp, by (3.10), so that u(13/ ugi+y
is a Z/q"Z-module) and of the fonnulas

(=€ UMyu\la and zp = € Z/qiz.

This obviously extendf. Ihe Z-modulc structure of u(1J_ The funclion
() @ (I +x)
is continuous becaul>e the congruence z = z' mod t,"Zp implies (I + xf
(I+ x mod 1n+13, @0 that the neighbourhood:+ gnz1” of z b mapped
to the neighbourhood ( 1+ xf utle! of/(::.). In particular, (I + xf may be
expressed as the limit
(1 +xf = i@@_<) +xf

of ordinary powcrl> (I + xf: Z,E Z, if z = ee Z,.
1

After this discussion we can now determine explicitly the structure of the
locally compact multiplicative group K * of a local field K.
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(5.7) Proposition. Let K be a local field and q = pf the number of
elements in the residue clas. ¢ field. Then the following hold.

(i) If K has characteristic 0, then one has (both algebraically and
topologically)
K* € Zffiz/(q- )Zffiz/p"ZEBZ;€.
wherea 2:0 and d = [K: Qy].
(i) 1t K has characteristic p, then one has (both algebraically and

topologically)
K& @Zffiz/(q-NZffize.

Proof: By (5.3) we have (both algebraically and topologically)
K* = (rr) x pg-1 x u@y € Zffi Z/(q - NZ ) up_1
Thi5 reduces us to the computation of the Zp-module Li(iI_
(i) Assume char(K) = 0. For n sufficiently big, (5.5) gives us the

i€omorphism
log: u(ni-—-+ p" = rr"n @ o.

Since log, exp, and .f(z) = (I + xf are continuou5, this is a topological
isomorphism of Zp-modulcs. By chap.l. (2.9), 0 admits an integral bais
al, .. ,ad_ over Zp. ie, o = zpal EB  EB‘ipal € Therefore
ue e ZI. since the index (uqi : Ly is finite and is a finitely
generated Zp-module of rank d, so is uni. The torsion subgroup of U(ll is
the group ufu of roots of unity in K of p-power order. By the main theorem
on modules over principal ideal domains, there exists in ulll, free, finitely
generated, and therefore closed, Z;,-submodulc V of rank d such that

u(l) = nea x v & Zlpaz 1 ;€'
both algebraically and topologically.
(ii) If char(K) = p, we have K € 1Fq((t)) (seep. 127) and

urtl= 1+P = 1+tF It

The following argument i€y taken from the book [79] of K. faas,1wi1

Letwl, .... w1 be a ba€i5 of Iwq IIFy,. For every natural number i relatively
prime to p we consider the continuom, homomorphism

o Zh — U"’)I g.(al, === 11p =ri0 uyf it
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This function has the following properties. If m = np", 1 2. 0, then

1) u(m=! gn(p-'Z{ilu(mi 1
and, fora= (a1, alE)Z{i,
@ @ ¢ pL = g(p'a) g U

Indeed, forw = L,,'Q hcv, € IFg, h; E Z. h, = a, mod p, we have
Rn(a)= fio+c.v,tn}1', = I+wtn modp,,**

and hence, since we arc in characteristic p,
ifo(p'a) = gn(a)t’ =1 + cvir fm mod um-+1.

As a varies overthe elements of Z{i,w. and thm also wl", varies over the clc-
menh of IFq, and we get (1 ). furthermore one has 1:n (P'a) = | modpm+l {=:}
W =0¢3h =0 modp, for i =1, .., f (=3 =0mod p, for
i=1, , f ==3@E p?.{, and this amounts to (2).

We now consider the continuous homomorphism of z,,-modules

g=Ngn: A= Nz{---,. v
®.p)=t @-p)=t
where the product Trn.pa=1 Z{i is taken over all n2. 1 mch that (n. p) =I,
each factor being a copy of Zf| . Observe that the product g(€) = ng,,(a,,

converges because gn(a;p e uc. Let m = 11p8, with (n, p) = I, be any
natural number. A5 Ifo(Z;) £;" 1-:(A), it follow€ from (1) that each coset
of u(ml /u(m+1J i€y represemed by an element of g(A). This means that g(A)
is dense in U( 11 Since A i"> compact and g is continuous, g is actually
surjective.

On the other hand, let@ = (,.. all, ) E A #0, ie,a.# 0 for
some n. Such an ay, is of the foml a; = p-f,, withs = .1-(a,) ::_ 0, and
311e 2, ... pZ{,. It now follows from (2) that

fo.(a,) € um,  gll(@ll) £ ugmen for m =m(a1) = ml

Since then are prime top, all the m(an) have to be distinct, for all o:;, #- 0.
Let n be the natural number, prime to p and such that an #- 0, which
satisfies m(ay;) < m(an,), forall n' #- n such thal a,,,#- 0. Then one has, for
all 11 #- 11, that

Oi,(a11) E um+it  where m =m(a,) < m(,-).

Con5cquently
“ Nn(a,,) ¢ | mod um-+i,

9(





and so g(€) #-1.This @howe the injectivity of g. Since A= Z;, this proves
the claim (ii). D
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(5.8) Corollary. i the natural number n is not divisible by the characteristic
of K. then one finds the following indices for the subgroup.€ of n-th
power.€ K*" and un in the multiplicative group K* and in the unit group U:
(K*: K, = n(u: Ut = T!I!*#;mm'
nl,

Proof: The first equality is a consequence of K* = (rr) x U. By (5.7), we
have

fi(K) xz1,, resp. U @ 11(K) x Z€,
when char (K) =0, resp. p > 0. From the exact sequence
l-oooen 1K)+ K @ p(K)------ + UK/ P(K) -+,
one has #.,(K) = #u(K)/u(K)*. When char(K) = 0, this gives:
(U 1 = #t, (KY#(Z,./nZp/ = #11,1(K)pd,-,.(u) = #un(K)/Inlp,

and when char(K) =pone gets simply (U : 1/*) = #p,,(K) = #p,,(K)/Inlp
becau>c (n. p) =1, i.e.,nZp = Z,,. n

Exercise 1. The logarithm function can he continued to a continuou€» homomorphi@m
log : ij;, ~+ e and the exponential f@€cllon to a cuntmuous ho.momorphism
exp: > Q\, where p-—-; = € Qr | vp(A) > 2-r}and vi' n the umque
extenqlon of the normalized valuation on Qr.

Exercise 2, Let K1Q, be a p-adJC number field. For 1+ . E U\iland : E 27, one
ha@y
o +xf =

The .\erie\ converges even for 1 EK @uch that vp(x) > ¢

Exercise 3. Under the ahove hypothe€e€ one has

(I +x)' =exp(zlog(l +1)) and log(l +.d =z log(!+ r).
Exercise 4. For a p-adic number field K, every €uhgroup ot finite index in K* is
both open and dosed.
Exercise 5. If K 1€ a p-adJC number field, then the groupgq Ky", for n EN, form a
ba@is of neighbourhood€ of 1 in K*.
Exercise 6. Let K bea p-adic number field, vp the normalized exponential valuation
of dt the Haar measure on the locally compact additive group K, €calcd €0
that  d1 = 1. Then one haq Vp(u) = /€CJ dx. Furthermore.

1(fl ol o
100

i€ a Haar mea@ure on the locally compact group K*





6. licnselian Field@ 143

§6. Henselian Fields

Mo1l-t results on complete valued fields can be derived from Hensel's
lemma alone, without the full strength of completene€s. This lemma is valid
in a much bigger class of nonarchimedean valued fields than the com_rlete
ones. For example, let (K, v) be a nonarchimedean valued field and (K, f,)
its completion. Leto, resp. 3, be the valuation rings of K, resp. K We then
consider the separable closure K,, of K in K, and the valuation ring o,, £ K,
with maximal ideal p,. which is as<,ociated to the restriction of fj to Ki,,

KEKVEf<, o<;ov<;0.

Then Hensel\ lemma hold5 in the ring o« as well as in the ring 3 even
though Ki, will not, as a rule, be complete. When Kv is algebraically closed
in - hence in particular char(K) = 0 - this it. immediately obvious
(otherwise it follows from (6.6) and §6, exerciSe 3 below). Indeed, by (4.3)
we have

o/lp =o,/lp, = 0P,

and if a primitive polynomial f(x) E Oi-[x] splill- over o,jp,, into
relatively prime factors ]I(.:i).h(t), then we have by Hensel's lemma (4.6) a
factorization in 3

/() € gC)h(x)

such that x — g modp’, h = 1i modp’, deg(g) = deg(*{). But thi€ factori?ation
already takei, place over 0,, once the highest coefficient of,-; is chosen to be
in o:,. because the coefficients off, and therefore also those of g and h are
algebraic over K.

The valued field K,, is called the henselization of the field K with re€pect
to v. It enjoys all the relevant algebraic properties of the completion X, but
offer<, the advantage of being itself an algebraic extension of K which can
also be obtained in a purely algebraic manner, without the analytic recourse
to the completion (see §9. exercise 4). The consequence is that taking the
henselization of an infinile algebraic extension LI K is possible within the
category of algebraic extenl-ions. Let us define in general:

(6.1) Definition. A henselian field i€ a field with a 110lwrchimedcan
valualion v whose wilu:-1.tion ring o sati.licl, Hensel's lemma in the sense
of (4.6). One also calls the valuation v or the wllu,1tion ring o henselian.
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(6.2) Theorem. Let K he a henselian field with re.@pec/ lo the valua-
tion | 1- Then | | admits one and only one extension to any given algebraic
extemion L, K. It is given by

let = | N (@)

if/,.K has finite degree n. In any case, the valuation ring of the ex/ended
valuation is the integral closure of the v:iluation ring of K in L.

The proof of this theorem is verhmim the same as in the case of ¢
complete field (see (4.8)). What is remarkable about our current setting i
that, convcr:-cly, the unique extendability also characterize€y hcnelian fields
In order to prove this, we appeal to a method which allows us to expres:
the valuations of the roots of a polynomial in terms of the valuatiom of
the coetticients. It relies on the notion of Newton polygon, which aril>es as
follows.

Lel v be an arbitrary exponential valuation of the field K and let
j(x) =ao +a;x +---+a, x1E K[Xj
he a polynomial satisfying asa,, -1- 0. To each term a;x* we a,;@ociate a poin
(i, L'(a)) E R2. ignoring however the point (i.00) if a,= 0. We now take
the lower convex envelope of the set of points
\ (0, v(ap)), (L, v(a1)), .. . (n. v(a11))*

Thil, produce& a polygonal chain which is called the Newton polygon of
(©9-

(1103

The polygon consists of a “"equence of line @egment& Sp, S, whose
@lope& arc strictly increa€ping, and which are subject to the following
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(6.3) Proposition. Lei f(x) = a *+ax + + anx" aga, -/= 0, be a
polynomial over the field K, v an exponential valwition of K, and w an
extension lo the splitting field L of .f.

It (r, v(a, )) ++ (s, v(a,}) is a line segmem of slope -m occurring in the
Newlon polygon off, then .f (.t) has preciselys- r roobaj. .., a_, of
value

w(a) =+~ =w,_,) =m.

Proof: Dividing by a,, only shifo, lhe polygon up or down. Thus we may

assume that an = |. We number the roots aj,. ., a, E L of f in such a
way that
w(al) = = w(a;p = ml
w(a_.cd = = w(agy = mz

w(a,+1) = = wlap) =my.

where m; < m, <+ < my+i- Viewing the coefficients a, as elementary
symmclric function5 of the roots a,- we immediately find

v(ay = v(l) = 0.
v(a,_1 2: @in\w(a)} = my

ra,_2 2: @in{w(aay)j = 2m.
@11 ,) = min | a,)) =sm
(a 1 ) 11m|n[ w(g .a ,1)) sm

the latter because the value of the term aj... a, is smaller than that of all
the others,

Hanow-1) 2 min {wle, .. D} = simy +my,
ixj41
Wap—g-2) = min {uw(ay, ...u(,\‘”)] = sim + 2my,
i
v(@ll .12) = min w(a,q -a,p)} =.11m1l+(s2-s1)m2,
12

and so on. From this result one concludes that the verticc> of the Newton
polygon, from right to left, are given by

n 0, —sisum), (= 5.5+ (52— soma).





146 Chapter 11, The Theory of Valuation€

The slope of the extreme right-hand line segment is

and, proceeding further lo the left,
smi+e+ (., - stymy - cetmit  +(s#1- s)mo+d

D00 (010 S-SV = ma

We emphasize that, according to the preceding propo€ition, the Newton
polygon consist€ of precisely one segment if and only if the rootsay, ... , <1,
off all have the same value. In general, f(x) factors intoa product according
to the slopes -mr < eee < -m 1,

1) 2, N 6,
/=l

where
e N (., -a).

usfa)=m;
Herc the factor fj correspond5 to the (r - j + 1)-th €cgment of the Newton
polygon, whose €lope equals minus the value of the roots of f,

(6.4) Proposition. 1 the valuation v admit.€> a unique extension w to the
.splitting field L off, then the factoriz:1tion

1) ©a, N 300
=

is defined a/ready over K, i.e., .f;(X) = TTu,al=m, (_t -ct,) EK[X].

Proof: We may clearly assume that a;; = I. The ">tatement is obviou'> when
f(x) i1> irreducible because then one has r.x, = o,a, for some u, E G(LIK),
and 1,inee, for any extension w of v, 1100, is anolher one, the uniquenel>s
impliel> that w(a;) = us(aai) = mi1, hence /i(x) = f(r).

The general case follows by induction on n. For n = | there is nothing to
show. Let p(.\) be the minimal polynomial of ajand g(x) =
KIxI. Since all roots of have the same value m;. p(x) a
of fi(x). Letgi(,) = The factorization of g(,) according to
the slopes is

g(r) = g109 N £,(x).
=2

Since deg(!;) < deg({), it follows that Jj(x) E Kf -l forall j=1, .,r. L'
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If the polynomial f is irreducible, then, hy the above factori.wtion result,
there is only one slope, i.e., the Newton polygon consists of a single segment.
The values of all coefficients lie on or above this line segment and we get the

(6.5) Corollary. Let j(x) = ag+ajx+- *+ant.ti E K[x) be,mi
polynomial with an I- 0. Then, if | | i.€ a nonan:himedean val
with a unique extension to the splilling field, one has

111 max{la. |, la},

In (4.7) we deduced thi<s rcult for complete fields from Hensel's lemma
and thus obtained the uniqueness of the extended valuation. Here we oblain
it, by contrast, as a consequence of the uniqueness of the extended valuation.
We now proceed to deduce Heme!'@ lemma from the unique extendability.

(6.6) Theorem. A nonarchimedean valued field (K, | 1) is hensc/ian if and
only if the valuation | | can be uniquely extended to any iligebr.iic extension.

Proof: The fact that a henselian valuation | | extend& uniquely wa€ dealt

with in (6.2). Let us assume conversely that | | admih one and only one extension
to any given algebraic extension. We first show:

Let f(x) = a, +a,t + _+anrn E v[x] be a primitive, irreducible
polynomial such that acan i- 0, and let J(x) = f(x) mod p E K[x]. Then
we have deg(!) = 0 or deg(J) = deg(f), and we find

J0) =Gip()™,
for€ome irreducible polynomial ip(x) E K[..t] and a comtant a.

As f i€ irreducible, the Newton polygon isa ,_jngle line segment and thu&
Ifl = max{luol, lanl\. We may assume that an is a unit, becaugpe othemi'e
the Newton polygon is a €egment which does not lie on the x-axi& and this
means that .f() = Go.

Let L IK be the splitting field of f(x) over K and O the valuation ring
of the unique extension | | to L, with maximal ideal €- For an arbitrary
K-automorphism a E G = G(LIK), we have Irral = lal forall a EL,
because | | and the composite | | 0 a extend the same valuation. This shows
that aO =0, a@=- If a is a zero off(;,.) and 11. ih multiplicity. then
aa E O for alla E C. Indeed, if a'¢ (J, then n()" laal® =In()" aal* > |
would imply that the constant coefficient a, could not belong to 0. Thu&
everya E G induces a K-automorphi&m & of OAI].and the ;,eroc:-. i:fa = rici
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of f(x) are all conjugate over k. It follows that .f(x) = if'rp(x) is
the minimal polynomial of ii over k. Since a,, E we furthermore
that deg(]) € deg( f).

Let now f(x) E olx] be an arbitrary primitive polynomial, and let
fx) @ £.() +/ ¥

be it5 factorization into irreduciblcs over K. Since | = 1fi = [ 13;1,

multiplying the /, by suitable constants yields If;1 = 1. The J;(x) are
therefore primitive, irreducible polynomials in o[x]. It follows that

190€L,0 -+ 1,00,

where deg(_f,) = 0 or deg({1) = deg(/;), and .11 is, up lo a constant factor.
the power of an irreducible polynomial. If =g h is a factorization into
relatively prime polynomiab "ji,h E K[x], then we must have

g éaaEl 1. h éhlg[jl 1,

wheretl,h ex and {I, .... '\="1 U J and deg(J,) = deg(J;) fori E /.
We now put
g€all_/;. henhfifi-
rEl JEC)

for a. hE  suchthata= (I, h=hmod p and f = gh. p

We have introduced henselian flelds by a condition of which the reader
will find weaker versions inthe literature, restricted to monic polvnomials
only. Both are equivalent as is shown by the following

(6.7) Proposition. A nonarchimedean field (K. v) is hensc/ian if any manic
polynomial /"(x) E o[x] which split. ¢ over the residue cfa.€.€ field k = o/p as

fCt) = j:i)li(x) mod p
with relatively prime manic factors"ji( \), Ti(x) E Kix ], admits itself a . @pliting
f(x) € 9()h(x)

into manic factors g(x),h(x) E o[xJ 8uch 1hat





g(,t) = j(x) modp and h(x) =Ti(x) mod p.
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Proof (H. NART): We have just seen that the property of K to be henselian
follows from the condition that the Newton polygon of every irreducible
polynomial f(x) = ao +aiv+ +aux'' E K[x] isa 5ingle line segment.
It i5 therefore sufficient to €how this. We may assume that an = I. Let LIK
he the &plitting field off. Then there is always an extension w of v to L.
It is obtained for example by taking the completion R of K, extending the
valuation of R ina unique way to a valuation V of the algebraic closure K
of R, embedding L into K, and restricting V to L It is also pm,sible to get
the extension w directly, without passing through the completion. For this
we refer to [93], chap. XII, §4, th. I

Assume now that the Newton polygon of f consist:- of more than one
segment:

Let the last segment be given by the points (m, e) and (n, 0). If e = 0, we
immediately have a con!radlctlon Becau5c then we have v(a,) :=: 0, so that
E Cl[x], and @ — = am-l =0 mod p, am "I- 0 mod p. Therefore
= (Xo-m + *** +an)X" mod p, with m > 0 because there i€ more
than one segment. In view of the condition of the proposition this contradict€
the irreducibility of f.

We will now reduce to e = 0 by a tran€formation. Let a E L be a root
of f(x) of minimum value w(a) and let a E K such that v(a) = e. We
consider the charncterlsllc polynomial |(x) of o-icl EK (a),r =n- m.
If = n J (x - &), then mex) = n: 4(x - a"a-1), Propoition (6.3)

that the Newlon polygon of i(x) also has more than one segment the
last one of slope

-w(a 'a') =v(@)- rw(@ =e- rf =0.

Since i(x) i5 a power of the minimal polynomial of a-'a’, hence of an
irreducible polynomial, this produces the same contradiction as before. D

Let K be a field which is hemelian with respect to the exponential
valuation v. If LI K is a finite extension of degree n, then i- extends uniquely
to an exponential valuation wof L, namely

w(a) = IV(NL1K(a))
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This follows from (6.2) by taking the logarithm. For the value groups and
residue cla<;<; fields of v and w, one gets the inclusions

V(K) @w(L™) and Kk <ii A
The index
e @ e(w V)€ (W(L"): v(K))
is called the ramification index of the exten<;ion LI K and the degree
f=fwlv=[:«l

is called the inertia degree. If v, and hence w = ¥ o NLIK, is discrete
and if 0. )J, rr, resp. 0, i3, N, are the valuation ring, the maximal ideal and a
prime element of K, resp. L, then one has

e € (w(NzZ: v(ndz),
so that v(rr) = cw(TT), and we find
m=tn(",

forsome unit @ E O*. From this one deduces the familiar U,ce chap. 1)
interpretation of the ramification index: pO = rrO = [1"0 = 3", or

(6.8) Proposition. One has Il : Kl
[L: KI@ ¢f.

._ ef and the fundamental identity

if v is discrete and LI K is separable.

Proof: Let wy, .. ,wi be repregcntatives of a basi€ of AIK and let
rn, ... ,rr,_1 E L* be element<; the value<; of which represent the variom
cosets in w(L*)/t'(K*) (the liniteness of e will be a con€equence of what
follows). If vi€ discrete, we may choose for instance rr; = N. We show that
the clements
war,. JI=I, .,f, i=O....e-1,

arc linearly independent over K, and in the discrete ca€pe fonn even a ba<;i5
of LIK. Let

e1 |

LL a,cvIni =0

1=0j@!
with a,; £ K. Assume that not all a1 = 0. Then there exi€t nonzero wms
o = L/= a,Jw and each time that s -1- 0 we find w(s. E v(K®). In
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fact, dividing s, by the coefficient a,€ of minimum value, we get a linear

combination of the w1, ... , c.vr with coefficients in the valuation ring 0 _c; K
one of which equab I. This linear combination is¢ 0 mod 1}, hence a unit,
so that w(s1) = E v(K*).

In the sum Zf;ol Si%Ti, two nonzero summands must have the same value,
say wisin) = wis;a;), i because otherwi:;.c it could not be zero
(observe that w(x) # w(y) 5 = min {us(x). w(y))). It follows that

ue(rr,) = U'(np + w(sj) € w(s:;) == w(nd) mod v(K*).
acontradiction. This shows the linear independence of the (JJJJf,. In particular,
wehaveef-::::[L:KJ.

Assume now that v, and thus also w, b discrete and let N be a prime
element in the valuation ring O of w. We consider the o-module

e1 J
M =L Lowarr,
1=0i=1

where 772 = TT' and show that M = 0, i.e., {wny il- even an integral basis
of O over 0. We put i
N = Low,,

=
sothat M =N + NN +---+n"-'N.  We find that

O=N+nN0,

because. fora € 0, wehavea ==aw;+ *°**+ alwr mod NO, a; E 0. This
implies

0= N+nN +TT0)=- =N + TTN +---+ TT"!N + necs,
sothat O = M + 13e = M + pO. Since LIK is separable, O is a finitely
generated o-modulc (1-ee chap. L (2.11)). and we conclude O = M from
Nakayama\ lemma (chap. I, S11, exercise 7). [m]

Remark: We had already proved the idemity fL : KJ = cf in a somewhat
different way in chap. 1, (8.2), also in the case where 1- wal- discrete and
LIK separable. Both hypotheses are actually needed. But, strangely enough,
the separability condition can be dropped once K is complete with respect

to the discrete valuation. In this case, one deduces the equality O = M in
the above proof from O = M + pO, not by means of Nakayama's lemma,
but rather like this: asp'M S; M, we get successively

0@ M +p(M+p0) @M+p'0€@ @M +p'0
forall v 2: 1, and since {pvO}@EN isa basis of neighbourhoods of Lero in CJ,
Mis dense in 0. Since o i€ closed in K, (4.9) implies that Mis closed m 0,
so thatM =0.
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Exercise I. In a hcnelian field the zeroes ot a polynomial are continuou€y functions
of its cocffo.:lents. More preci€cly, one ha">: let f(x) E: K\x] be a monic polynomial
of degreen <-ind

() = IbiA -air

ild\ecompOition into linear factor€, with  :-_ |, a#-ay for1# - 1T the momc
polynomial J;( t) of degree 11 has all sufficiently dose to hose of _f(x‘),
then it has r roots fi,, ~ /J, which approximate the a,--- @ W any previously

given preclslon.
Exercise 2 (Krasner's l,emma). Let a £ K be \eparahlc over K and let a =
a1, .. a" be it€ conlugate@ over K. If fl £ K i€ @uch that
la-/J1 <la-a,l for i =2 ... n,
then one ha\ K(a) @ K(/J).

Exercise 3. A field which 1 1cnsenan * with re@pect lo two incduivalent valuations i€
scp<lrably cloged (Theorem ¢ £.K. ScHmiwn)

Exercise 4. A €eparably closed lield K a hen€clian v.ith re@pect to any
nonarchimedean valuation.

More generally, valu<ltlon of K admit€ a unique cxten€mn to any purely
in@cparable extension

Hint: If a =a EK, one is forced lo put w(a) = fiv(a).

Exercise 5. Lcl K a nonan.chimedean valued field, o the valuation ring,
and K is hensehan if and only if every polynomial

=x"+ «++a e ci[x| such that a0 p and aa 1. p ha\ a
Lero u E p.

Hint: The Newton polygon.
Remark: A local rmg o with maximal ideal pis called hemelian if Henlel's lemma
in the sense of (6.7) hold€ for it. A characterization of these rmg\ which i.\ important
in algebraic geometry i™ the tollowing:

A local ring t i€ hensclian 1f and only if every finite commutative o-algcbra A
spliN into a direct product A= nl._, A, of local rings 2\«

The proof i€ not straightforv.ard, we refer to [Itn], chap. |, €4, th. 4.2.

§ 7. Unramified and Tamely Ramified Extensions

In this section we fix a base field K which is hcniielian with respect to
a nonarchimedcan valuation v or | 1 As before, we denote the valuation
ring, the maximal ideal and the residue class field by 0. p, k, re:c.pectively.
if LIK is an algebraic extcn€ion, then the corresponding invariants are
labelled w, 0, q:3, A, respectively. An especially important rélc among these





extensions is played by the unramificd extensions, which are defined as
follows.
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(7.1) Definition. A finite extension LIK is called unramified if the
extension ;._lk of the residue class field is separable and one has

lL:Kl=[h: k)

An arbitnuy algebraic cxtemion LI K i.9 called unramified if it is a union of'
finite unramified subextcnsions.

Remark: This delinition does not require K to he hen,clian; it applie5 in
all case<, where v extend:;, uniquely to L.

(7.2) Proposition. Let LIK and K'IK be two extensions imide an algebraic
closure i<IK and let L' = LK'. Then one has

LIK unramified ===> L'IK' unramified.

Each subexremion of an unmmified extension is unramified.

Proof: The notatiom, o.p.k: oip ik i O0)\}3A; 0\}3 A" arc self-
explanatory. We may a:,,sume that LIK is finite. Then /,IK is also finite
and, being :,eparable, is therefore generated by a primitive element ii,
A= K(@@"). Leta E () be a lifting, f (x) E oLxj the minimal polynomial of a
and J(x) = f(x) mod p E K[x ]. Since

D.. Ki 'S deg({) @deg(/))€ [K(a), KI'S[L, K[ € [A"Il-

one has L = K (a) and J(x) is the minimal polynomial of ii over k.

We thm have L' = K'(u). In order to prove that L'IK' is unramified.

let g(,) E be the minimal polynomial of a over K' and ]?(x) =
i?(x) mod p' E Being a factor of f(x), g(x) is €cparable and hence
irreducible , hecau<,c otherwise g(x) i5 reducible by Hensel's lemma.
We obtain

Wl < (LK) = deglg) = deg(®) = '@ 1T < 13«1
Thi:,, implies Lf,": K') = [A" K1], i.e., L'IK" is unramilicd.
If LIK is a rnbcxlcm.ion of the unramified extension L' | K, then it follow:,,

from what we have ju:,t proved that L'IL i,, unratnified. Hence so is LI K, by
the formula for the degree. D

(7.3) Corollary. The composite of two unramificd extensions of K isugain
unramified.
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Proof': It suffices to show this for two finite extensions L[K and L'IK,
LIK is unramified, hence soi" LL'IL', by (7.2). This implie€y that LL'IK i">
unramified as well becau:-e separability is tran:-itive and the degree:- of field
(and residue field) extensions are multiplicative. (W]

(7.4) Definition. Let L IK he an algebraic extension. Then the composite
TI K of all unramilicd rnbextensions is called the maximal unramitied
subextension of LI K.

(7.5) Proposition. The residue class field of T is the sep,irab/e c/w,urc A,
of « in the residue cim,s field extemion AIK of LIK, whereas the value
group of T equal.> thal of K.

Proof: Let ).0 be the residue class field of T and assume ii E A i:-
separahle over K. We have to show that ii E Ao. Let f(x) E K\xj he the
minimal polynomial of ii and .f(x) E o[xj a monic polynomial such that

= f mod ).J. Then f(r) is irreducible and hy Hcnsel's lemma has a root a
in L wch that ci = a mod g}, i.e., LK(a) : K] = [K(ci) : KJ. This implies
that K(a)IK is unramified, so that K(a) S; T, and thu:-.ii E J..o.

In order to prove w(T*) = v(K*) we may suppo:-e LIK to be finite. The
claim then follows from

[Tc KI 2 (W(T") ¢ v(K))J1'ocK] @ (W(T") cVv(K)IT ¢ Kl (]

The composite of all unramified extensions inside the algebraic closure K
of K is simply called the maximal unramified extension K. IK of K
(nr = 'non ramifiee’). It5 residue class field is the separable closure K,.!1c
Knr contains all roob of unity of order m not divisible by the characteristic
of k because the Separable polynomial x" - | splits over K., and hence also
over K, by Hensel's lemma. If « is a finite field, then the extension Km IK
is even generated by these roots of unity because they generate K, IK.

If the ch;uacterlStic p = char(K) of the residue class field is poitive. then
one ha5 the following weaker notion accompanying that of an unramified
extension.

(7.6) Definition. An algebraic extension LIK i.¢ called tamely ramified
if the extern.ion AIK of the residue clas., fields i.’> separable and one has
(L :T]. p) = I In the infinite ca.@e thi¢ latter condition is taken to mean
that the degree of each finite subextension of LIT is prime lop.
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A@ before, in this definition Kneed not be henselian. We apply it whenever
lhe valuation t of K has a unique extension to L. When the fundamental
identity ef = [L : KI holds and AIK is separable, to say that the extension
is unramified, resp. tamely ramified, simply amounts to saying that e = I,
resp. (c,p) = I.

(7.7) Proposition. A finite extemion LIK is tamely rnmified if and only if
the extemion LIT is generated by radicals

L =T(mFi. ."Va,)
such that (m,, p) =I.In this case the fundamental identity always holds:
IL, K] @ef.

Proof: We may as;ume that K = T because LIK is obviously tamely
ramilied if and only if LIT is tamely ramified, and if thi€ is Lhe case, then
I/ . KI=)).. : K| = f. Let LIK be tamely ramified, so that k = A and

(IL : Kj,p) = I We fir;,t show thate = 1 implie@ L = K. Leta EL" K
Writing a = a1, .am for the conjugates and a = Tr(a) = L;]q a,,
the clement = a- %a E/.-K has trace Tr(/J) = L;é”, = 0. Since
14(K*) = we may choo€pe ah EK* such that v(h) = w(fJ) and obtain

aunitc = fJth E L"K.it? t@ace L; @ t:; = 0. But the conju@@tc: £, hage
the same rc:,,1due classes£, m a because A= k. Hence O = Li=1121= mt;,
and thus m = 0 mod p, which contradicts pf [L: K] and mI[L: K].

Now let @y, . wr Ew(L*) be a system of representatives for the
Juotient u{L*)/v(k") Jand m, the order of w, mod v(K*). Since
w(L*y = %L’(NL\k(L”)) € Yv(K*), where 11 = IL: K], we have m;In, so
hat (m;, p) = 1. Lety, EL* be an element such that 11:(ri) = w;. Then
o(y™) += v(a), with . EK, o thal Y,m, = (i, forsome unitg, in L.
As A = k we may write c, = h;u;, where b, E K and u, isa unit in L
which tends to I m A. By Hensel":,, lemma the equation xm, - u, =0 has a
solution /J, E L. Puttinga, = y,f].] P EL, wefindw(a)=w and

m;
"!

=a;, i= ].I
where a, =ch, E K, ie, we have K(\'LJ,..,"F,) £ L By
construction, both fields have the same value group and the same rci>idue
class field. So, by what we proved first, we have

LeKe, ."ja).
The inequality [L  KI _:: e and thu:, in view of (6.8), the equality
[L : Kj = e, now follows by induction on r. If L; = K("€), then
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wi E W(Lj) yields
e(L1IK) = (w(L;): v(K*)) 2: m12: [L1: K.

Aboe(/,Ili) 2:[L: Lil, because w(L*)/w(L]j) is generated by the residue
dai>f>e<, of u>2, ., wr. Thus

e@ e(LIL,)c(L,IK) 2' [L, L, I, KI€[L,K\.

In order to prove lhat an extem,ion /, = K ("y;Ti, . if> tamely
ramified, it <;uftices to look at the caf>e r = 1, ie, = K("fa),
where (m, p) = |. The general case then follows hy induclion. We may
assume without loss of generality that 1< if> separahly dosed. This is seen

by passing to the maximal unramified extension K; = K,,,., which haf> the
separable closure 1<; = K. of k as ih residue class held. We obtain the

following diagram

L ——0L,

K--K,,

where LN K, =T = K and L, = K,w/o. If now LK, is tamely
ramified, then ,\;11<1 is separable; hence A; = 1<; and pf [L,; : Kil=
[L:K]= jl: TJ,ie,LIK i<;alsotamely ramified.

Let a = 7/a. We may assume that [L : KI = [K(VG) : KI =m.
In fact. if ¢ if> the greatest divisor of m such that a = a' for <;ome
a' EK*, and if m' = m/d, then a= and [K(,(/2): K] =m'. Now
let n = ord(w(a) mod v(K*)). Since mw(ct) = v(a) E v(K*), we have
m = dn. Consequently w(a") = 1+(h), h E K@, and v(h") = w(ctm) = v(a);
thus am= a= Ehllfor some unit r in K. A<; (d.p) = 1, the equation
xd - ¢ = 0 splits over the <;cparably dm,ed residue field 1< into distinct linear
factors, hence also over K by Henf>el'<; lemma. Therefore am =1i = a
for some new h E K=* Since xm - a is irreducible, we have d =1, and
hence m =n. Thus

e2n=1I1:Kl2:el 2:¢
in other words j = I, and so A= 1< and pf n = e. This shows that LIK i€
tamely ramified.

(7.8) Corollary. Let LIK and K'IK be two extemiom imidc the algebraic
closure i<IK, and L' = LK'. Then we have:

f,IK tamely ramified===} L'IK' tamely ramified.

Every suhextew,ion of a tamely ramified exten.€ion is tamely ramified.
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Proof: We may assume without loss of generality that LIK is finite and
con<;kler the diagram

L
|

T
|

| S Cl o

The inclusion T S; T' follows from (7.2). If LIK is tamely ramified,
then L = oMfan), (m,,p) = 1 hence L' = LK =LT'=
T(C"Fi. @othat L'IK' isalso tamely ramified. by (7.7).

The claim conccmmg the subextemions follows exactly as in the
unramified case. [m]

(7.9) Corollary. The composite of tamely ramified extensions is tamely
ramified.

Proof: This follows from (7.8), exactly a!, (7.3) followed from (7.2) in the
unramified case. n

(7.10) Definition. Lei LIK be an algebraic extension. Then the compos-
ite VIK of all tamely ramified subextemions is called the maximal tamely
ramified 1,ubextension of LIK.

Let w(L*)'1n denote the subgroup of all clements w E w(L*) such
that mw E v(K*) for some m sati!,fying (m. p) = 1. The quotient group
11°(/#) (' /v(K*) then consists of all elements of w(L *)/v(K €) whose order
is prime top.

(7.11) Proposition. The maximal tamely rnmified subextension VIK of
L IK h;.is value group w(V€) = w(L */Pl and re.\id11e da.€s field equal 10 the
separable closure A., ofK in AIK.

Proof: We may restrict to the case of a finite extension LIK. By
passing from K to the maximal unramified subextension. we may assume
by (7.5) that A, = k. As pf e(VIK) = we certainly
Conversely we find. a!, in proof of (7.7), for

wE a radical o: JaEL such thata EK. (m, p) = | and
=w, so that one haso: EV, andw E w(V*). o
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The results obtained in this section may be summari7ed in the following
picture:
K

x C Ay = Ay C: A

n

T c \2 c; L

WK = w(T*) € w(L"? C w(L").

If LIK is finite and e = e'pa where (e',p) = I, then [V: T] = e'. The
extension L IK is called totally (or purely) ramified if T = K, and wildly
ramified if it is not tamely ramified, i.e., if V #-L

Important Example:  Consider the extension Qp(()IQp for a primitive

n-th root of unity (. In the two cases (n, p) = | and n = p', this extension
behaves completely diffcremly. Letus lin,tlook at the case (n.p) = land choose
as our base field, instead any dii,cretely valued complete field
K with finite residue class field k = with g = p".

(7.12) Proposition. Let L = K((), and let Ojo, resp. AIK, be Ihe extension
of valuation ringi,,, rei, p. residue dw,s fields, ofL IK. Suppose that (n, p) = I.
Then one has:

(i) The extension LIK ii,, unrmified of degree f, where f is the smallest
natural number such that qf = 1 mod n.

(ii) The Galoii,, group G(LIK) i.€ canonically isomorphic to G(AIK) and is
generated by the automorphism <p : ( i+ (.

(i) O = o[(I.

Proof: (i) If ¢(X) is the minimal polynomial of ( over K, then the
reduction ¢(X) is the minimal polynomial of ( = ( mod 13 over «
Indeed, being a divisor of xn - T, ¢(X) is separable and by Hcn<,cl's
lemma cannot split into factors. ¢ and J; have the same degree, so that
[L K =[K(): Kl=[\ K]=: .f. LIK s therefore unramified. The
polynomial X" - | splits over O and thm, (because (n, p) = 1) over,\ into
distinct linear factors, so that,\\= IF"r comaim, the group ,, of n-th roob
of unity and is generated hy it. Consequently f is the <tnallc:-I number 1,uch

thaty,, € IF;. i.e., such that nlql - I This shows (i). (ii) rc:-ulti,, trivially
from thb.
(iii) Since LIK is unramified, we have pO = 1}, and since 1.( L1t

reprc5ent€p a basl> of AIK, we have O = o[(] +i.,0. and O = o[(j by
Nakayama's lemma. 1]





1i7. Unramificd and Tamely Ramified Extensions 159

(7.13) Proposition. Let ( be a primitive pm -th root of unity. Then one has:
(i) Qp(0IQpistotallyramificdofdegreerp(pm)=(p-Hhpm 1

(i) G(0..(010.,) :a (Z/pmZ).

(iii)  Zpl(l isthe valuation ring ofQp(l;).

(iv) 1- ( isa prime element ofZp[(J with norm p.

I
Proof: I;= m i€ a primitive p-th root of unity, i.e.,
I;*-1+i;p 2+ +1=0. hence
dp-Hpm-1+ (B> 1+ + 1= 0

Denoting by ¢ the polynomial on the left. ( - 1 i€ a rout of the equation
¢(X +I)=U. But this is irreducible because it satisfies Eisenstein’s criterion:
¢ = pand ¢() =0a™ - P o )= -1t mod )

. 1G(@(E)Tp)
It follow& that [Qp(() : Q/1] = rp(pm). The canonical bijective. since
-+ (Z/p1Z)*, & 1 n(a), where er(= (*(n, is therefore

both groups have order rp(pm). Thus
N -1 =1)0 - any=e@) =p.

Writing w for the exICnsion of the nonnali.wd valuation v;, of  we find
furthermore that rp(pm)I'(( - 1) = vp(p) = I. i.e, IQ\(OIQp totally
ramified and ( - 1 is a prime element of QI'((). A& in the proof of (6.8),

it follows that Zpf( - 1] = Zp[(] is the valuation ring of QI'((). This
c.:oncludes the proof. o

If (n is a primitive n-th root of unity and n = n'p,,,, with (n ,p) = I,
then propm,itiom (7.12) and (7.13) yield the following result for the maximal
unramified and the maximal tamely ramified exten€pion:

0y ST =Qple) SV =T &) € Q) |

Exercise |. The maximal unrnmified extenpion ot 1€ obtained hy adjoining ;ill
roots of unity or order prime to p.

Exercise 2. Let K he hensehan and K, IK the maximal unramified extension.
Show that the subextenliom or wis IK corre@pond 1-1 to the @uhextension€ or the
©eparable dolurc K,11<.

Exercise 3. Let LIK he totally and lamely ramitied, and let 1, re@p. I, he the value
group of L. re\p. K. Show that the 1ntennedlalc field€ of LIK corre\pond 1-1 to
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§8. Extensions of Valuations

Having seen that the henselian valuations extend uniquely to algebraic
extensions we will now study lhe que<;tion of how a valuation 1 of a
field K extends to an algebraic extem,ion in general. So let v be an arbitrary
archimedean or nonarchimedean valuation. There is a little di€ycrepancy in
notation here, because archimedean valuations manifest themselves only as
absolute values while the letter u has hitherto been used for nonarchimedean
exponential valuation€y. In @pite of this, it will prove advantageous. and agrees
with current usage, to employ the letter 11 simultaneou€ply for both types of
valuations, to denote the corre<;ponding multiplicative valuation in both case€
by | Ivand the completion by K- Where confusion lurks, we will supply
clarifying remarks.

For every valuation v of K we consider the completion Kv and an
algebraic clornre K;, of K,,. The canonical extension of 1+ to Kr i<; again
denoted by 1- and the unique cxlemion of this latter valualion to K1, by V.

Let LI K be an algebraic cxten"ion. Choosing a K -embedding
i L — K, U,I
we obtain by restriction of V to r L an exten€pion
W = 10T

of the valuation 1- to L In other words. if v, re@p.V, are given by the absolute

values | 1. re@p. | Iv,on K, Kv, resp. K,., where | Iv extends precisely the
absolute value | 1, of K,, then we obtain on L the multiplicative valuation
Xl = |TX[57

The mapping r : L —+ K, is obviously continuous with respect to thi<;
valuation. It extends in a unique way to a continuous K -embedding

T Lw -+ f<,,.

where, in the case of an infinite extension LI K, L., does not mean the
completion of L with respect to w, but the union Lu, = LJ, Lur of the
completion<; /.,;, of all finite subexten<;ion<; L,IK of LJK. This union
will be henceforth called the localization of /. with respect to w. When
fl: Kl< co. r isgiven by the rule

x =w-lim x,l =7 -lim Unl
oo " oo
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where is aw-Cauchy sequence in L, and hence {rx,;}nEHa ii-Cauchy
€cquence m Note here that the ,;equcnec 1y, converges in the finite
complete extension rL  Kv of K,.. We consider the diagram of fields

The canonical exten€yion of the valuation w from L to Lu, j._precisely the unique
extension of the valuation v from K, to the extension L., IK". We have
Lw=LKyv,

because if LIK is finite, then the field LK, € L,,. is complete hy (4.8).
contains the field Land therefore ha,; to be it€ completion. If L,.[Ki has
degree n < oo, then, by (4.8), the ab,;olute values corresponding to v and w
satisfy the relation

16l = | Nei, ()],
.

The lield diagram(*) is of central importance for algebraic number theory. It
shows the pa,;,,;age from the "global extension” LIK to the "local extension™

L1 1 Ky and thm represent€p one of the most important method,; of algebraic
number theory, the so-called local-to-global principle. This tenninology
arises from the case of a function lleld K, for example K = :C(!), where the
elemenb of the extension L arc algebraic function€ on a Riemann surface,
hence on a ?,lohal object, whereas pasf>ing to Kv and L.,, @ignifies looking at
power series expansions, i.e., the local study of functions. The diagram (*)
thus cxprc,;scs in an abstract manner our original goal. to provide methods
of function theory for use in the theory of numbers by mean€p of valuation€.

We saw that every K -embedding r : L -+ K, gave u€ an extcn€ion
w =Vo r of v. For every automorphi@m a e G(i<; IK,) of Kv over Kv, we
obtain with the composite

L%k, %kl
a new K-embedding r' =a or of L. It will be f>aid to be toT

m-cr Kue The following result gives us a complete description pos@ible
extenSions of v to L.

(8.1) Extension Theorem. LeiLIK be an algebraic field extension and v a
valuation of K. Then one has:
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(i) Every extension 11: of the valuation v arise€ as 1hc compo@ite w =V o 1
for some K -embedding 7 : L -+ K,..

(ii) Two extensions Vo r and V* r' are equ,il if and only if rand r' are
conjugl.Jle over Kv.

Proof: (i) Let w he an extension of r to L and L,p the localization of
the canonical valuation, which is again denoted hy w. This is the unique
extension of the valuation v from Ku to Lw. Choosing any K,.-cmbcdding
r: Lw - Kv, Lhc valuation Vo r has to coincide with w. The restriction
of r to L istherefore a K-emhedding r : L -+ K,, such thal w =V or.
(ii) Letrand aer, witha E G(Kv IK1,), be two embedding:. of L conjugalc
over Kv. Since Vis the only extemion of the valuation v from K,, to Kv,
one has V = Voa, and thus Vor = I'o(aor). The extensions induced to L
by v and by a o7 arc therefore the same.

Conversely, let 7T L > Kv be two K-embedding€ such that
Vo T =Vo T. Leta :TL— T'L bethe K-isomorphism a= T'0 T* .
We can extend a lo a Kv-isomorphism

a TL K-> TL - Ke-

Indeed, TL is dense in 7z- K, .. so every clement x E TL K, can be written
as a limit
x = lim ©x,

for some sequence x, which belongs to a finite subextension of L. aa
Vo T =Vo T the@equencc Tx;; = aTx,, converges to an elemenl

ox = lim o'r,\’,l

in 'L - K. Clearly the correspondence x i—+ ax doc5 not depend on the

choice of a sequence {.x,,J, and yields an iSomorphism 7L« K,, » . TL ¢ K,
which leaves Kv fixed. ExICnding a to a K;,-automorphism @ & G(i<,IKv)
givesT' =@ o T, so that T and T are indeed conjugate over K. ©

Those who prefer to be given an extension LI K by an algebraic equation
f(X) =0 will appreciate the following concrete variant of the above
exten'i;ion theorem.

LetL = K(a) be generated by the zero a of an irreducible polynomial
'(X) e K[X] and let

£ = AEM - 007
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be the decomposition off  (X) into irreducible factors T (x), .... f; (X) over
the completion Kr. Of course, the m, are one if f i<; separable. The K-
em@ddings r: L+ K,, are then given by the zeroes /3 of f(X) which lie
in K@

r:L- ,f<i,, r(@=fl.

Two embeddings r and r' are conjugate over K,, if and only if the zeroef, r(a)
and r'(a) are conjugate over K,., i.e., if they are zeroes of the same irreducible
factor [;- With (8.1), thif> gives the

(8.2) Proposition. Suppo.€e the extension LI K i< generated by the zero a
of the iireducib/e polynomial f(X) E K[X].
Then the valuations wi. . w, extending 1 to L corre.€pond 1-1 ro llic
irreducible factors /1, ....1; in the decompos8ition
FXy=f0om .- oo

off  over the completion K, ..

The extended valuation w, i5 cxplicilly obtained from the factor 1; as
followf,: let a, E f<v bea zero off; and let
r; L—+K,, ara,
be the corresponding K -embedding of L into K,,. Then one has
w, = VOr,.
7, extends to an i<;omorphism
r, L., @Kr@)

on the completion Lv-, of/. with re<;pect lo ue,.

Let LIK be again an arbitrary finite extension. We will write wlv to
indicate that w is an extension of the valuation v of K lo L. The inclusionf,
L c..+ L,,, induce homomorphisms L OK Kv -+ 1, viaa 0 h 11 ah, and
hence a canonical homomorphism

rp oK Ky, N1y
ur
To begin with, the tensor product is taken in the scn<;e of vector €paces, i.e. the
K -vector space Lis liti:ed to a Kv-vectorspace L®K K v- This latter, however,
if> in fact a Kv-algebra, with the multiplication (a0 h)(@'0 h) =aa'0 hh',
and r.p isa homomorphism of Kv-algebral’,. This homomorphism is the subject
of the
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(8.3) Proposition. IfLIK is€cparable. then L ®K K" TTu-ii, Lu™

Proof: Lela be a primitive element for LIK, sothat L = K(a), and let
f(X) e K!X I be its minimal polynomial. To every wlv, there corre€ponds an
irreducible factor /,,,(X) ¢ K,-IXJ of f(X), and in view of the separability,
we have f(X) = TT,,,P 1;,,(X). Consider all the L,i, as embedded into an
algebraic closure Kv of K, and denote by a,,, the image of a under L --,,. L.
Then we find L,;, = K, (aw) and f;,,(X) i€ the minimal polynomial of au,
over K,,. We now get a commutative diagram

KL IXVE .-+ N KX

1 1

L ®K Kv nL,,,,

where the top arrow is an isomorphism by the Chinese remainder theorem.
The arrow on the left i<;induced by X 1—a® | and is an isomorphism because
KFXI/(f) € K(a) = L. The arrow on the right is induced by Xi---+ a,,
and is an i5omorphism because KvIXJ/(/1,) € K, (ar) = L1,,. Hence the
boltom arrow is an i;,omorphism as well. D

(8.4) Corollary. 1f LIK isseparnbJe, then one has
[L:Kl=3Le: Ko
and

NL1K(ct) = n N1,.1K, (@), TrL1K<a) = LTrL,,IK, (a).
wie

e
Proof: The fin,t equation results from (8.3) since [L : KI = dimK(L) =
dimK, (L ®K Ku)- On both sides of the isomorphism
L®K K, 5 TT Lu
ul,
let us consider the endomorphi&m: multiplication by a. The characteri5tic

polynomial of a on the K,.-vector space L ®K K,, is the same a€p that on the
K -vector Space L. Therefore

char. polynomiall.'K(a) = N char. po\ynomiall,,,IK,,(a).
wiv

This implie€ immediately the identitie:- for the norm and the trace. D
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If v is a nonarchimedean valuation, then we define. as in the hensclian
case, the ramification index of an extension wlv by

e, € (w(L"): v(KJ)
and the inertia degree by
fu =[xl

where Au_,. resp. k. if> the re@idue class field of w, rei'>p. v. From (8.4)
and (6.8). we obtain the fundamental identity of valuation theory:

(8.5) Proposition. Ifv isdiscrete and LIK separn.ble, then
L ewf, ©IL:KI

mil'

This proposition repeat” what we have already seen in chap. I, (8.2).
working with the prime decomposition. If K is the field of fractiom of a
Dedekind domain 0, then to every nonzero prime ideal p of 0 is associated

the p-adic valuation Ip of K' defined by = vu, where (a) = np p'r
(see chap. 1.§ 11, p. 67). The valuation ring is the localization op. If0
is the integral closure of 0 in L and if

pO =Pt

is the prime decomposition of p in L, then the valuations w, = f N\p,.
i =1, .... r. are precisely the extensions of v = Lp to L, e, arc the
corresponding ramification indice5 and f, = [0/€. olp] the inertia
degrees. The fundamental identity

te,J; @IL: K[
S|

has thus been established in two different ways. The raison d' efre of valuation
theory, however, is not to refonnulate ideal-theoretic knowledge, but rather,
as haf> been @tressed earlier, to provide the po@sibility of passing from
the extension LIK to the various completions Lu-IKv where much simpler
arithmetic law5 apply. Let us also emphasize once more that completions
may always be replaced with hem.elizations.

Exercise 1. Up lo equivalence, the valuations of lhe lid<l QJ(./5) arc given as
followe.

1) +hv'SI1 = la +hv'SI and la +h-/51, = la -h, /sl are the archimc<lcan
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2) If p=2or5ora prime numher cf=.2. 5 @uch that ({f) = -1, then lherc is
exactly one exten@ion of | 1, to Q(.}s), namely -
la+ hvs1p = la®. 5//1;/2.

3) Ir p i@ a prime number cf- 2.5 @uch that (-ff) = 1. then there arc two

extensionsof | 1"to (Q(v's), namely
la+hv'51€,=la+hyl,. resp. la+h-J5Ip,=la-hyl,,.

where y i€ a @olulion of 32- 5=0in
Exercise 2. Dctcrmrne the valuation€ of the field QI(i) of the Gaussian number€y.
Exercise 3. How many cxtcn@ion to Q,(:1/2) does the archimedean ahsolute value |
ofQ admit?
Exercise 4. Let LIK be a finite separable exten€ion, o the valuation nng of a

di\crelc valuation v its integral closure in L. If wiv varie\ over the cxtcn@ions
f v to L'zwd 0, re@p. arc the valuation rings of the completion€ K,, resp. L..

en one
o®o3, € NO,.,
al,

Exercise 5. How doc€ proposition (8.2) relate to Dedekind'@ propo@llion.
chap. 1, (8.3)?

Exercise 6. Let I, 1 K be a finite field extension, v a nonan:hlmcdcan exponential
valuation, and w an cxtcn€ion to L. If O i% the integral closure of the valual10n rmg O
of rinL, then the localization o-ii of O al the pnme ideal ip = ja £:0 1 w(o:) > 0J
is the valuation ring of w.

§9. Galois Theory of Valuations

We now consider Galois extension€ LI K and study the effect of the Galois
action on the extended valuations wlV. This lead€p to a direct generalization of
“Hilbert's ramification theory” - see chap. I, 89, where we studied, instead
of valuations v. the prime ideal& p and their decomposition p 20\-‘- -9 N
Galoi€ extensions of algebraic number fields. The arguments slay the €ame,
so we may be rather brief here. However, we formulate and prove all result€
for extension<, that are not necessarily finite, using infinite Galois theory. The
reader who happen€ not to know this theory ,;houkl feel free to assume all
extensions in thi€y ,;ection to be finite. On the other hand, we treat infinite Galois
theory also in chap. IV, § | below. Its main result can be putina nut€hell like
this:

In the case of a Oaloi€y extengion LI K of infinite degree. the main theorem
of ordinary Galois theory, concerning the 1-1 correspondence between





§9. Ualots Theory of Valuattons 167

the intermediate fields of LI K and the subgroup'> of the Galois group G(LIK)
ceases to hold; there are more subgroups than intermediate fields. The
corregpondence can be salvaged, however, by considering a canonical
topology on the group G(LIK), the Krull topology. It is given by defining,
for every a E G(L IK), as a basis of neighbourhoods the cosets aG(L IM),
where MIK varies over the finite Galois subextensions of LIK. G(LIK) is
thus turned into a compact, Hausdorff topological group. The main theorem
of Galois theory then has to be modified in the infinite case by the condition
that the intermediate fields of LIK corre€pond 1-1 to the closed subgroups
of G (I, 1 K). Otherwise, everything goes through as in the finite case. So one
tacitly restricts attention to dosed subgroups, and accordingly to continuous
homomorphisms of G(L IK).

So let LI K be an arbitrary, finite or infinite, Galois extension with Galois
group G = G(LIK). If vis an (archimcdcan or nonarchimcdean) valuation
of K and w an extension to L, then, for every a E G, woa also extends v,
so that the group G acts on the set of extensions wiv.

(9.1) Proposition. The group G acts tramitively on the et of exten-
siom wlv, i.e., every two extensiom <JJ"e conjugate.

Proof: Let 11 and w' he two extensions of v to L. Suppo@e LIK is finite.
If w andw' are not conjugate, then the @et€

{wocricrEG} and {w'ocricrEG}
would he disjoint. By the approximation theorem (3.4), we would be able to
findan _t E L such that

laxly,, < 1 and lertly > 1

foralla E G. Then one would have for the nonna = Nrik (x) = TTrr-=G a_t
that lal, = TTrrla\ |.,, < 1 and likewise lal,, > 1, a contradiction.

If LI K is infinite, then we let MI K vary over all finite Galois subexten-
sions and consider the @et€@ XM = {er e Cl wocrllil = w'IM). They arc
nonempty, as we have juf.t seen, and also closed because, fora EG "- XM,
the whole open neighbourhood aG(LIM) lies in the complement of XM.
Wehave nm XM # 0. because otherwi€pe the compactness of G would yield
a relation n;"""y X m, = 0 with finitely many M,, and this js a comradiction
bccau<,c if M = M1 M,., then xM = n:=l XM [m]

(9.2) Definition. The decomposition group of an extension w o( v to L is
defined by

Gw =G, (LK) \a EG{LIK) lwna =w}
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If v is a nonarchimedean valuation, then the decomposition group contains
two further canonical subgroups

Gw2fw2Ru,,

which are defined as follow<;. Let 0, resp. O, be the valuation ring, p,

resp. '13, the maximal ideal, and let k = o/p. resp.).= 0/'1], be the rc<;idue
clas1- field of v, resp. w.

(9.3) Definition. The inertia group ofwlv is defined by
fu,=111,(LIK)={aEGwlax=xmodq] fora/l XEQ)
and the ramification group by

R, =Ru (LK) = {a EGu, | fL.f = I modV forall x EL¥).

Observe in this definition that, fora E Gu,, the identity woo= w implic<;
that one always ha<; rrO =0 and ax/x E (.J, for all x EL*.

The "ubgroups Gu,Iw,R,, of G = G(LIK), and in fact all canonical
subgroups we will encounter in the sequel, are all closed in the Krull
topology. The proof of thi€ ir, routine in all case€p. Let us just illu@trate the
model of the argument for the example of the decomposition group.

Leta E G = G(LIK) be an element which belongs to the do€urc of G,
Thi€ means that. in every neighbourhood aG(LIM), there is some element
aM of G.,,. Herc MIK varies over all finite Galob subcxtcnsions of LIK.
Since aM E aG(LIM), we have aMIM = alM, and woaM = w implies
that w 0al111 = w 0allllM = wIM- A€ Lis the union of all the M, we get
1110a = w, so that a £ G,. This shows that the subgroup G,,, is do€cd
inG.

The groups Gw. Iw, Ru- carry very significant information about the
behaviour of the valuation v of K as it is extended to /.. But before going

into this, we will treat the functorial propertie€ of the groups G,,.. 1., R,..

Consider two Galois extension€ LIK and //IK' and a commutative
diagram

Ke K
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with homomorphisms r which will typically be inclusions. They induce a
homomorphism

™ G(L'IK)—---+ G(LIK), T*(@)=rlaT.
Observe here that. LIK being nonnal, the same is true of TLITK, and thus
one has a'TL £;; TL, 50 that composing with T-1 make5 sense.

Now let w' be a valuation of L', v' = wIK' and w = w' or, v = wiK*
Then we have the

(9.4) Proposition. r*: G(L'IK")-+ G(LIK) induces homomO1phisms
Gw,(L'IKY) - G.,,(LIK).
1, (11K 1, (LIK).
Rw,(L'IK') - Rw(LIK).
In the latter two eci. €. €, v i€ assumed to be nonarchimedean.

Proof: Let a' E Gu,,(L'IK") and a= r*(a). If.t EL. then one has
IXlu,,0 = laxlw = Ir *a'Txlw = la'rxlus' = Irxlu" = Ixl,,,.
sothat a E Gw(LIK). If &' E /.,,,(L'IK") and x E 0, then
w(ax - x) = w(r-*(a'rx -Tx)} = w'(o'(rx) - (rx)} >0,
and a E L,i,(LIK). If &' E Rw,(L'IK) and x EL, then

we - 1) = wr aux. 1)) = wi@nx 1) >0,
©o that a E Ru-(LIK). ]

If the two homomorphisms r L -+ L' and r K -+ K' are
isomorphisms, then the homomorphisms (9.4) are of course isomorphisms.
In particular, in the case K = K'. L = L'. we find for each r E G(L IK):

GWAr=r-G, r, Iw,,=r-fuT, R 3.,=r-'R.,,T,
i.e.,, the decomposition, inertia, and ramification groups of
valuations are conjugate.

Another €pecial case arises from an intermediate field M of LI K by the
diagram
L L

.M

r* then becomes the indm,ion G(LIM) - G(LIK), and we trivially get the
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(9.5) Proposition. For the extension.€ K <; M <; L, one has
G,,.(LIMJ @ G,,,(LIK) n G(LIMJ,
L, (LIM)@ |,,,(LIK) NnG(LIML
R, (LIM) € R,,(LIKING(LIM).

A particularly important special ca€pc of (9.4) occurs with the diagram

which can be as€ociated to any exten:-ion of valuations w Iv of L1 K. If LIK is
infinite, then Lw has to be read a€y the localization in the sen:-c of SR. p. 160.
(This distinction is rendered superfluous ifwe consider, a:- we may perfectly well
do, the hen:-clization of LIK.) Since in the local extension L.,,IK,. the exten:-ion
of the valuation is unique, we denote the decomposition, inertia, and
ramification groups simply by G(L,,IK,), I(L,, IKv), R(Lu,IK,. In this
case, the homomorphism r€p is the restriction map
G(L,,,IK,)----> G(LIKJ, a----> alL,
and we have the

(9.6) Proposition.  G,, (LIK) ;=c: G(LwIKrl.
1, (LIK) (L, IK).
R,, (LIK) ;; R(."IK,).

Proof: The proposition derives from the fact that the decomposition group
Gu,(LIK) consi:-l:- prcci€cly of those automorphism:- a E G(LIK) which
are continuou:- with respect to the valuation u. Indeed, the continuity of the
aEC;.,(/,IK) isclear. Foranarbitrary continuous automorphi:-m a, one has

IXlo, < | € laxl,,, = 1,111 a< 1.
becau:-c < 1 means that x!* and hence all,0 a 1.! is a ue-nullsequence,
ie, < |. By S3, p. 117, thil> implies that w and w u a arc equivalent.

and hence in fact equal bceau5e wik =w o0a IK, so thata E G,,,(L IK).
Since L is dense in L.,, every a E G.,(LIK) extend€ uniquely to a
continuoul> K,-automorphism O of L,,. and it i€ clear that OE I(L.,,IK,.),
re:-p. J E R(L,,,IKi,), ifa E I,,(LIK), re@p. a E R,,,(LIK). Thi€ prove€ the
hijectivity of the mappings in question in all three ca<;c€p. [W]
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The above propoition reduce,; the problem€ concerning a single valuation
of K to the local €ituation. We identify the decomposition group G,, (LIK)
with the Galois group of LwIK| and write

G.,,(LIK) © G(L,,IK,),

and similarly /,,.(LIK) = /(L,,,IK,,) and R,,.(LIK) = R(L,;,IKv).

We now explain the concrete meaning of the @ubgroups G,,, /11*R,,. of
G = G(LIK) for the field extension LIK.

The decomposition group Gw consists - as was shown in the proof
of (9.6) - of all automorphisms a E G that are continuous with respecl
to the valuation w. It controls the extension of v to L in a group-theoretic manner.
Denoting by Gu,\G the set of all right cosets G, a, by W" the ,ct of
exten<,ion€ of v to Land choosing a fixed extension w, we obtain a bijection

G\G — Wy, Guo — wo.

In particular, the number #Wv of extensions equals the index (G: G,,.). As
mentioned already in chap. I, *9 - and left for the reader to verify - the
decomposition group also describes the way a valuation - extends to an
arbitrary separable extension LIK. For this. we embed LIK into a Galois
extension NIK, choose an cxtemion u' of 1- to N, and put G = G(NIK).
H= G(NIL), G,, = G,,(NIK), to get a bijection

G, \GH....::2,,. We-  Gu,aH - woalr

(9.7) Definition. The fixed field of G11,
2, =Zu,LIK) = {x EL lax = foral a EG,),

i€ called the decomposition field of w over K.

The r6le of the decomposition llcld in the extension LIK is described by
the following proposition.

(9.8) Proposition.
(i) The restriction w. ofw to Zw extends uniquely to L.

(i) 1f 1+ j1 nonarc/Jimedean, 1117 /as the same residue das€ lic/d and the
©ame value group as 1-.

(iii) Z., =L NK, (1/c inicrccrion i€y wken imide L.,,).
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Proof: (i) An arbitrary extem,ion W' of wz to L is conjugate tow over Zu-;
thw;. w' = W oa, for some a E G(L1Z11.) = Gu,,ie, w' = W.

(iii) The identity Zu, = L N Kv follows immediately from Gu-(LIK) €
G(L,..IK,),

(ii) Since Kv has the i,,ame residue class field and the 5ame value group as K,
the same holds true for Zw = L N K,,. \)

The inertia group 1,,, is defined only if w is a nonarchimedean valuation
of L. It i5 the kernel of a canonical homomorphism of G.,,. For if O is
the valuation ring of w and ',I13 the maximal ideal, then. since aO = CJ and
aq] =1], everya e G,,, induces a K-automorphism

0: CJ/'\13------ +0/1}, xmod"|3 i+ ax mod 1},
of the residue c\a55 field A, and we obtain a homomorphi<,m
Gy — Aute(MD]

with kernel I.,,.

(9.9) Proposition. The residue class field extension AIK is nonnal, and we
lJave an exact €equence

| — Iy — Gy —> Gl) — 1]

Proof: 111 the case of a finite Galois extension, we have proved thii,, already
in chap. 1, (9.4). In the infinite cai,e AIK is normal 5ince LIK, and hence
also AIK, is the union of the finite nonnal subexten5ions. In order to prove
the i, urjectivity Off: Gw--—+ G(AIK) all one ha5 to show i, that f(G.,) is
dense in G(AIK) because j (Gw), being the continuous image of a compact
set, is compact and hence do&ed. Let c¢f E G(AIK) and OG(Alp) be a
neighbourhood of 0, where pIK is a finite Galois subextension of AIK. We
have to show that this neighbourhood contains an element of the image f (n,

r E G,. Since Zu, has the re5idue class llcld «, there exi@ts a finite Galois

mbextension Mizw of L1Za, whose residue class field M containi,, the field

. As G(MIZ,,)----+G(MIK) is surjective. the composite

Gu=G(LIZy}) — GM|Zy) — G(MIx) — G{ulx)

is abo &urjective. and if r E G.,, ii,, mapped to01,,, then f(r) E irG(AItL),

__0 [m]
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(9.10) Definition. The fixed field of /,,,
Tw= To(LIK) = WX EL | ou =\ foradi v E 1),

i,s called the inertia field of w over K.

For the inertia field, (9.9) gives u:,. the isomorphism
GTulZa) = GGl

It ha:,. the following significance for the extension LIK.
(9.11) Proposition. T,,,1Z..,, is the maxinrn/ unramilicd €ubexrension of LIZ,,,.

Proof: By (9.6), we may asmme that K = Z,, is henselian. Let TIK be the
maximal unramilied :,.uhextension of LIK. It i5 Galois, since the conjugate
extensions are also unramified. Hy (7.5). T has the residue clas<: field A,, and
we have an isomorphism

G(T|K) > Glaglx).

Surjectivity follows from (9.9) and the injectivity from 1he fact that TiK
is unramillcd: every finite Galois suhexten:;.ion has the <:ame degree as its
residue class field extension. An element » E G(LIK) therefore induces the
identity on A,. i.e.. on A, if and only if it belong:,. to G(L IT). Consequently,
G(LIT) = Iv-,hence T =T, m]

If in particular K is a henselian field and K, IK its separable closure, then
the inertia field of this exten:;.ion is the maximal unramified exten:,.ion TI K
and has the separable closure K., IK a:,. it:,. residue clas:,. field. The isomorphism

G(I'K) € G(K,IK)
:,.hows that the unramified exten&ions of K correspond 1-1 to the :,.eparable
extensions of k
Like the inertia group, the ramification group R,,, is the kernel of a canonical
homomorphbm
o — x{(LIK),|

where
x(1.1IK) = Hom(LI/r.r).
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where LI = w(L*), and ' = v(K*. If a E /,,, then the associated
homomorphism
Xa: J/I' » A*
as follows: for K =0 mod I' € iJ/I', choo:;,c an x EL* such that
=8 and put _ a:
Xa(O)=€  modq.3.

Thi€p definition is independent of the choice of the representative 8 E 8 and of
x E L* for if x E L=* is an element such that w(x') = w(x) mod I,
then w(x') = w(xa), a E K*. Then t = xau, u E 0% and since
au/u =1 mod 11] (bccau:;.c u E /,:p), one gets ax'/x' =ax/x mod I.p.

One sees immediately that mapping a i-+ X, is a homomorphism
1y, »  x(LIK) with kernel Rw.

(9.12) Proposition. R, is the unique p-Sylow subgroup of /u,

Remark: If LI K is a linite cxtcm,ion, then it is clear what this means. In the
infinite ca<,c it ha,; to be understood in the sense of profinite groups, i.e., all
finite quotient groups of R,,., resp. /,,,/ Ri.. by dosed nonnal -;ubgroup:-. have
p-power order, resp. an order prime top. In order to under@tand this better,
we refer the reader to chap. 1V, § 2. exercise 3-5.

Proof of (9.12): By (9.6), we may a€sumc that K is hen€elian. We restrict to
the case where LI K js a finite extension. The infinite case of the proposition
follows fonnally from this.

If Ru, were not a p-group. then we would find anelement a E R,,, of
prime order £ == p. Let K' he the fixed field of a and «' its residue class
field. We show that ¢ =A.Since Ru, £;; fu, we have that T i; K. Thus
A, i; «* sothat AIK' is purely inseparable and of p-power degree. On the
other hand, the degree has to be a power off, forif ii EA and if o EL s
a lifting of ii, and f*Cl) E K'[x] b the minimal polynomial of a over K',
then _f(x) = H(xr, where }{(x) E «'Ix] is the minimal polynomial of ii
over k! which has degree either | or £, as this is so for f(x). Thus we
have indeed k =A.so that LIK' is tamely ramified, and by (7.7) is of the
form L = K'@@) with a = /@, a E K. It follows that mx =(a.with a
primitive {-th root of unity ( E K 1-Since a E R11,. we have on the other hand
aa/a =1; =a | mod |_p, a contradiction. Thi€ proves that Ry, is a p-group.

Since p = char(A), the elements in  have order prime to p, provided
they are of finite order. The group x(LIK) = Hom(LI/I''A*) therefore has
order prime top. Thi€ abo applie€ to the group I,r/Ru, i; x(LIK), sothat
Ry;- is indeed the unique p-Sylow subgroup. LI
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(9.13) Definition. The fixed field of R,,,,
Vu,= V,,.(LIK) = {x EL lax = for all a E Ru},
is ca/Jed the ramification field of w over K.

(9.14) Proposition. VwiZw is the maximal tamely ramified subextemion
ofLIZu,.

Proof: By (9.6) and the fact that the value group and residue class field do
not change, we may a<,5ume that K = Zu, is henselian. Let V,r be the fixed
field of R,I- Since Rw is the p-Sylow subgroup of/,,,, Vu, is the union of
all finite Galois subextension5 of LIT of degree prime to p. Therefore V.,,
contains the maximal tamely ramified extension V of T (and thm of Zp).
Since the degree of each finite subextension MIV of V.,,IV is not divi5iblc
by p, the residue field extension of MIV is separable (see the argument in
the proof of (9.12)). Therefore VwIV is tamely ramified, and V.,, = V.

(9.15) Corollary. We have the exact sequence
I+ R.,,—+ fw--+ x(LIK)--+ I.

Proof: By (9.6) we may as5ume, as we have already done several times
before, that K is henselian. We restrict to considering the case of allnite extension
LI K. In the infinite case the proof follow:- as in (9.9). We have already seen
that R,, i€ the kernel of the arrow on the right. It therefore suffices to show
that

Uy 2 Ry) = Vi : Tl = #x(LIK).
As TwIK is the maximal unramificd €@ubextension of V,,,IK, V,, I'€, has
inertia degree 1. Thus, by (7.7),
Vo e Tl @#WV)W(T.)

Furthermore, by (7.5), we have w(T;) = v(K*) =: I, and putting
L1= w(L *), we @ec that(V)/u(K*) is the subgroup .:1u,i;r of 1J.Jr
consisting of all element:- >t order prime top, where p = char(K). Thus

Vit Tyl = #(AY/T).

Since A* ha€p no clements of order divisible by p, we have on the other hand
that





((L|K)Y =Hom(A/I . 1*) = Hom(A'Y /", 3*).
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But (7.7) impliei,, that A* contains them-th roob of unity whenever 1.3/ I’
contains an element of order m, because then there is a Galoi€ extension
generated by radicals T,,,(n:./a)ll'w of degree m. This showi,, that x(LIK) i€ the

Pontryagin dual of the group 6.1, I' so that indeed

i Tul =AW /) = #x (LIK).| o
Exercise 1. Let K be a henclian lield, LIK a ramitied Galm.\ exten€lon,
C; = G{LIK), f = I(LIK)and I =G/1 = 1 is ahehan and become
al'-modu'ebylettmgi.r=aiEl'operatcon Tf---+ara 1.

Show that there i€ a canonical isomorphi€@m | € x(LIK) ot I'-modulc€. Show
furthermore  that tamely ramified extension can he embedded into a tamely
ramified extcmion Quch that G j\ the @cmi-direct product of X(I IK) with
G(AIK): G € >1 G(AIK).

Hint: Use (7.7).

Exercise 2. The maximal tamdy ramified ahclian exten@ion V of Q\ i€ finite over
the maximal unramllied abelian extemion T of Q.

Exercise 3. Show that the maximal unramified extension o1 he power | gcries field
K = isgiven by T = IF\((t)), where ) » 1i@ the Wlgebraic closure] of 17, and
the amely ramified extension by T({%f Im gN, (m. py = 1})]

Exercise 4. Let v be a nonarchlrnedean valuallon of the field K and let i; he an
cxtcnion to the separable clo@ure K of K. Then the dccornpoitlon held Zj of r
over K i€ isomorphic to the hcn@eli7atlon of K with respect to 1~ m the @en€e of §6.
p. 143.

§ 10. Higher Ramification Groups

The inertia group and the ramification group inside the Galois group of
valued fields are only the first term€p in a whole seric<, of €ubgroups that we
arc now going to study. We assume that LIK b a finite Galob extension
and that vk is a discrete nonnalized valuation of K, with po@itivc residue
field characteristic p, which admits a unique extension w to L. We denote
by vr = cw the associated nonnalized valuation of L.

(10.1) Definition. For every reJ/ number s € - | we define lhc s-th
ramification group of LI K by





G, =G,(LIK) ={a € Gl vi(aa- a).
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Clearly, G_; = G, C, is the inertia group/ = /(LIK). and G; the
ramification group R = R(LIK) which have already been defined in (9.3).
As

v,.(r-ara - a)= vL(r-l(ara - ra)) = vi(a(ra) - ra)
and rO = 0, the ramification groups form a chain
G=G 12Gn2C12 e 2
of normal subgroups of G. The quotients of this chain @atisfy the

(10.2) Proposition. Letii. € CJ be a prime element of L. For every integer
s 2-. 0, the mapping
Gi/Gowr — U IR, g T
. Ty
is an injective homomorphism which is independent of the prime element n,.
Here Ui'l denotes the s-th group of princip,il units of L, i.e, U{° = 0*

anduj_t= 1+n{O, for1 2: I.

We leave the elementary proof to the reader. Observe that one has
qum;Ul.'l 0 a~and UL "Tvi+tt @ A fors 2: |. The factors G.dG., 1-1 are
therefore abelian group€y of exponent p, for 1 2: 1, and of order prime to p,
fors = 0. In particular. we find again that the ramification group R =G i@
the unique p-Sylow subgroup in the inertia group / =

We now study the behaviour of the higher ramification group” under
change of fields. If only the base field K is changed, then we get directly
from the definition of the ramification group€ the following generalization
of (9.5).

(10.3) Proposition. Jf K' is an intermedialc held of L jK, then one has, for
all@2-. -1 that
G.,(LIK') © G,(LIK) N G(LIK').

Matter€y become much more complicated when we pa% from LI K to a
Galois subextcnsion L'IK. It is true rhat the ramillcation group€ of LI K arc
mapped under C(LIK) - C(L'IK) into the ramilkation groups of L'IK.
hut the indexing changes. For lhe preei€c description of the situation we
need some preparation. We will a€'>ume for the sequel that the residue lield
extension ).IK of LIK isseparable.
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(10.4) Lemma. The ring extension O of 0 is monogenous, i.e., there exists
an x £ Osuch that O = ofr].

Proof': As lhc residue field extension AIK is separable by assumption, it
admib a primitive element .\. Let f(X) E o\X] be a lifting uf the minimal
polynomial j(X) of.\. Then there is a representative x £ O of X such that
n = f(x) isa prime element of 0. Indeed, if r isan arbitrary representative,
then we certainly have vL(f(x)) :::_ | because f(X) = 0. If x itself is not as
required, i.e., if VL(f(x)) 2: 2, the reprc@entative + + 1TL will do. In fact,
from Taylor's formula
fx+rrt.)=f)+f'(x)nl.+Imf, hEO.

we obtain rL (f(x + rrL)) = I since f'(x) E O®, because .f(X) =fa0. Inthe
proof of (6.8), we saw that the

xin' =xif(x)’, )=O, .., f-1, i=0,...,e-1.

fonn an integral basis of O over 0. Hence indeed O = o[x ]. 0

Porevery a E G we now put
iL1d() = vi (ax -x),

where CJ = o[\ ]. This definition does not depend on the choice of the
generator x and we may write

G.(LIK) @ la e Gl iLdayo, +1)

Passing to a Galois subextension L'IK of LIK, the numbers iLiK(a) obey
the following rule.

(10.5) Proposition. Ifc' =eLIL' is the ramification index ofL IL . then

—_—
iL1K@) Ty iL K(@).
Proof: Fora' = I both sides are infinite. Let a' == 1, and let O = o[x] aml

@ = o[y, withO* the valuation ring of L".By d on, we have

cliulk@h =w (a'y-y), 11.1K(a) =tL(ax - V).
We chom,e a fixed a EC=  G(LIK) @uch that rrlu = a' The other
elements of G with image a' in G' = G(L'IK) are then given by ar.
TE H = G(LIL"). It therefore suffices to show that the clement€
a=ay-y and h=TT (av: - x)
ncll
generate the €pame ideal in (.
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Let /(X) E O'[X] be the minimal polynomial of x over L' Then
f(X) = flIn=lI(X - rx). Letting a act on the coefficients off, we get the
polynomial (er f)(X) = fIrE// (X - arx). The coefficient€ of rrf - f are all
divisihle by a= ay - y. Hence a divides (a.f)(x) - f(x) = +h.

To show that conversely his a divi5or of a, we write ya:-, a polynomial
in x with coefficients in ci, y = g(t). A& x is a zero of the polynomial
g(X)- y E (TfXI, we have

s(X) - y @ fX)h(X).  h(X) e OTXJ.

Letting a operate on the coefficients of both sides and then :-,ubstituting
X = x yield:-, y - ay = (af)(x)(ah)(x) = xh(ah)(x), i.e., h divide:-, a. O

We now want to :-,how that the ramification group G,(LIK) is mapped
onto the ramification group G,(L'IK) by the projection

G(LIK) -  G(L°IK).

where r is given by the function 111.iK : (-1. xi)-—+ f-1, 00),
t='IL1K(s)=J . h_
o~ (Go: Gl
Here (Go Gt) is meant to denote the inverse (G, Gg-' when
-1 ::0,i.e,-imply |, if-1<.,::: 0.ForO <m:=s:==m+ |m EN
we have explicitly

LLIK(S) = _I_Ct:1 +K2 +--+gm+(\' -m)gnH 1) - g; =#G,.
Ro

The function 1JLIK can be expre%cd in terms of Ihe numbers ILiK(a) as
follows:

(10.6) Proposition. ‘ILIK (@) = :JU LrrG min\iL K (a), s+ t] - I

Proof: Let (;I(s) be the function on the right-hand side. It i:-, continuous and
piecewi:-,e linear. One ha& H(0) = 1JLiK (0) =0, and if m 2: -1 isan integer
andm <s <m+ ]then

. 1 . 1
Y= —#oeGligxorzm+2l = ———— =y, . (s).
ol lici n 2 = GG,y = e

Hence O = 1t IK- J
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(10.7) Theorem (fiERIIRANO). Let L'IK be a Galois subexten.@ion of LIK
and H = G(LIL"). Then one has

G,(LIK)H/H = G1(L'IK) where t = 1/Lic(s).

Proof: Let G = G(LIK). G' = G(L'IK). For every a' E G', we choose an
preimage a e G of maximal value it ik (a) and show that

ivk(a’y = L= {ivx @ = 1)

Let m = iLiK(@). If r E fi belongs to Hm-l = Gu,1(LIL"), then
it1dr) 2: m. and iLidar) 2: m. so that iL,dar) = m. If r € IIm 1

e iffal '.‘f,'l)KfarS":aﬂﬁn' 6. IRBBInY FE). EhRegivg therefore

iuik(a) =€ L min{iL1K(r),m).
e nclf

Since iLIK(T) =it ,u(r) and &' = e,.c = #Ho. (10.6) gives the formula(*).
which in turn yield€

a EGHM (== illK(a)- I
{=> iulK(@) - | 2:1/L:c(s)
(=== o' EGr(L'IK). t = 1LILi(s). ]

{=> 1/LicCiL K(a)-

The function 1/LIK is hy definition strictly increasing. Let the inverse
function be i/JLIK : I-1.00)---+ 1-1, 00). One defines the upper numbering
of the ramification groups by

G'(LIK) :=G(L|K) where s= w,m(z)l

The functions 1/LiK and i/JLiK satisfy the following tram,itivity condition:

(10.8) Proposition. 1f L' IK isa Galois .@ubexIcnsion of LI K, then
nuk =1L« ormlu and YIIK = iALIL o y/ltiak
Proof: For the ramification indices of the extensions LIK, L'IK. LIL'

we have = eu Ket./l. From (10.7). we obtain G,/11, = (G/11),,
I= thus

| | |
-HG, @-#(G/11),-#H,.
ciik <LK el
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This equation is equivalent to
1JIw(s) = 1IL,1K(®)1ILILY(S) = (LK 01JL1c)(s).
A€ W(O) = (LK o 1ILIL)(O), it follows that K = rjLIK o 1ILIL' and

the formula for V, follows.

The advantage of the upper numbering of the ramification group€p is that
it isinvariant when passing from LI K to a Galois subextemion.

(10.9) Proposition. Let L'IK be a Galois €ubextension of LIK md
H = G(LIL'). Then one has

G'(LIK)H/H €©G'(l. iKJ.
Pr-oof: We puts= inL'IK(l), G' = G(L'jK). apply (10.7) and (10.8). and
get

ClH/H = erriikQ1H/H = C@i&‘(v,ukuu =61y 4.Vl

1

=G', =G ()
Exercise 1. Let K and K., = K(n, where (ha pnmitlvc p' -th root ot unity.
Show that the group€p of K, Ik arc given as follow:

G = G(K,jK) fori=0,
(K11IK1)  forl:

G,=G(K,,Ik2) forp

G, =1 for p*

Exercise 2. Let K' he an intermediate field of LIK. Describe the relation between
the ramification group€ of LIK and of LIK' in the upper numbering.





Chapter Il
Riemann-Roch Theory

§ 1. Primes

Having set up lhe general theory of valued fields, we now return to
algebraic number fields. We want to develop their basic theory from the
valuation-theoretic point of view. This approach ha€» two prominent advantages
compared to the ideal-theoretic treatment given in the first chapter. The
first one results from the possibility of pa€€ing to completions, thereby
enacting the important "local-to-global principle”. Thi€ will he done in chapter
VI. The other advantage lie: the fact that the archimedean valuations bring
into the picture the points at infinity, which were hitherto lacking, as the "primes
atinlinity" In this way a perfect analogy with the function fields is achieved.
This is the task to which we now tum.

(1.1) Definition. A prime (or place) p of an algebraic number field K is a
cfas.€p of equivalent valuation€ of K. The nonarchimedcan equivalence c/a.€pses
arc rnlled finite prime.€ and the an:himedean ones infinite prime €.

The infinite primes pare obtained, according to chap. Il, (8.1), from the
embeddings T : K » C. There arc two sorts of these: the real primes,
which arc given by embedding5 7 : K -» R., and tbe complex primes.
which arc induced by the pairs of complex conjugate non-real embcddingli
K - C. p ils real or complex depending whether the completion KP is
isomorphic to IR or to C. The infinite primes will be referred to by the formal
notation ploc, the finite ones by p lcc.

In the case of a finite prime, the letter p hali a multiple meaning: ii also
stand<; for the prime ideal of the ring cJ of integers of K. or for the maximal
ideal of the associated valuation ring, or even for the maximal ideal of
the completion. However, thi5 will nowhere create any risk of confusion.
We write PIP if pis the characteri€tic of the reliidue field K():1) of the Jinile
prime p. For an infinite prime we adopt the convention that the completion KP
also serve€p as its own "residue field." i.e., we put

K(p) := Kp, when pix.
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To each prime p of K we now associate a canonical homomorphi:,.m

from the multiplicative group K* of K. If p is finite, then is the p-adic
exponenlial valuation which is nonnalized by the condition =Z. Ifp
is infinite. then vp is given by

vp(a) = - log 1Iml, where
r: K —+ isan embedding which define& p.

For an arbitrary prime PIP (p prime number or p = oo) we put
furlhermore
@ [<(P) « K],
sothat Ji,= [Kp: P/l if Ploo, and
pipifp oo,
'.I1(p)0| oo« if p 1oo.

This convention suggests that we consider e as being an infinite prime
number, and the extension as being unramified with inertia degree 2.
We define the absolute value IP : K » H by

lalp=" n1(p)&-pel

fora-=- 0 and !0lp = 0. If pis the infinite prime as:,.ociated to the embedding
r: K _;. thenone find@

lalp = Iral, re-p. lalp= [ral
if p isreal, resp. complex.

If LI K isa llnite extension of K, then we denote the primes of L byV-
and write V-IP to signify that the valuations in Ihe class V,, when restricted
to K, give those of p. In the cale of an infinite prime €. we define the
inertia degree, rc€p. the ramification index, by

f<+JIP = [L,,p: Kp], re:-p.cWIP =1
For arbitrary primes € |P we then have the

(1.2) Proposition. (i) L,,pypeipf'<+JIP= L'Ip[L,:u: Kpd = [L: K],
(ii) 91(j) = 91(p).i.,
(iii) t\p(a) = e'+Ipvu(a) fora EK*,
(iv) vu(N1.'llw"(a)) = J,:p.pv,:p(a) fora EL*,





) lal'ld = INL,I'Kp(@)lp fora EL.
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The normali.Led valuations | IP satisfy the following product formula,
which demonstrates how important it i5 to include the infinite primes.

(1.3) Proposition. Given any a E K*. one hw; lalp = I for almost all p,
and

nlal, € |

P
Proof: We have vp(a) = 0 and therefore Itil;;= 1for all which do not
occur in the prime decomposition of the principal ideal (a) chap. I,* 11.

p.69). This therefore holds for almm,l all p. From (1.2) and formula (8.4)
of chap. II,
NK,z;(a) = TT NKvlu.J./a)
Pl

(which includes the case p = :xi, = R), we obtain the product formula
for K from the product formula Q, which was proved already in
chap. I1, (2.1):
nlal ©onnlal, ¢ ﬂ ]‘[\Nkv‘w(@\p mNK‘Q(a)\IY =1 O
fIPli> »

We denote by ./(0) the group of fractional ideals of K, by P(o) the
subgroup of fractional principal ideals, and by

Pic(o) = J(o)/P(0)

the ideal class group C/k of K.

Let ui,. now extend the notion of fractional ideal of K by taking into
account abo the infinite primes.

(1.4) Definition. A replete ideal of K is ,m element of the group
1(0):=/(0)x nR*;.
PIX
where R: denotes the multiplicative group of positive real numbers.
In order to unify notation, we put, for any infinite prime p and any real

number u E €.
pli=e” e Ry |
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Given a @ystem of real numbers \ip, Ploo, let TTPI

vector
n p" @ c. .. )E nw,;.
plex, pie;..,
and not the product of the quantities e'p in IR. Then every replete ideal
a E 1(8) admits the unique product representation
uée n p' x n p'e@cnp”.
Ploc plx, P
where wp E :Z for pf 0o, and vp E IR for 1-1100. Put
o =TT p% and e =1 P
pi ploc
<o that a = ar x axx,. a1 b a fractional ideal of K, and a'’XJ isan elemenl of
TIPI= JR@. At the same time, we view ctr, resp. a-x,, as replete ideab

" always denote Ihe

Thus for all elements of 1(6) the decomposition

applies. To @ EK* we associate the replete principal ideal
[al= [pvp(a) = (@) x n PVp(@)_
p P
These replete ideals form a subgroup P(I?) of ./(0). The factor group
Pic(0) = ./(0)/P(0)
is called the replete ideal class group, or replete Picard group.

(1.5) Definition. Theabsolute norm ota replete ide;J/ a= np PV" is defined
to be the positive real number

91(a) @ n 91(p)".
P

The abt,olute norm b multiplicative and induces a surjective homomor-
phism _
N:J@ — RY|
The ab€olute nonn of a replete principal ideal [a] j5 equal to | in view of the
product formula (1.3).

91([a]) @ no1(p)"" 1@ lal, @ |
p p
We therefore ohtain a surjcctive homomorphism
71 : Pic(6) » R:
on the replete Picard group.
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The relations between the replete ideals of a number field K and tho@c of
an extension field L are afforded by the two homomorphisms

I(E3 K)%J(Qt.).
NLIK

which are defined by
,,W(I'TP"") @nnir

w31y

N, dTT 1) €N N ph,.._

P31

Herc the various product signs have to be read according to our convention.
These homomorphisms satisfy the

(1.6) Proposition.

@) for achain of fields K S; L <; M, one has NMIK = N1.1K o NMIL and
i1Vt1K = iMIL 0iLiK-

ii) Nrik(L Ka)=all.ki fora E .|(6K)-

(iii) niN1.gK('21) =1)1(21) forQl E J(OL).

(iv) 1t LIK is Galois with Galois group G. then for every prime ideal V

ofol, one ha@ NL1K(V)ol. G av.

(v) For any replete principal ideal fa] of K, resp. L, one ha€
iL1d[al) = fa], resp. NL1K<la]) = INLw(a)].

(vi) NLw(211) = NL1K(21)r i€ the ide..il of K generated by the nomls
NL1K(a) of all a E 211.

Proof: (i) is hal>ed on Ihc transitivity of inertia degree and ramification
index. (ii) followl> from (1.2) in view of the fundamental identity

L,.pP f-dlp<"-dIP = IL : Kl (iii) holds for any replete “prime ideal" V
of L, hy(12):

N(NLIKFI)) € '11(pl-") @ 11(p)L+'1" @ (1))
and Ihcrcfore for all replete ideals of L.
(iv) The prime ideal plying below V decomposes in the ring O of integers
of Las p= (V1 +VrY, with prime ideals V, = a,V, a, E G/G,ii, which
arc conjugates of V' and thus have the <,amc inertia degree f. Therefore

N..Kfl)oeploe TTII‘ S h n oriée No.

1=1 [EG.p TEG
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(v) Forany element a E K*, (1.2) implies that v,:p(a) = e,:plpvp(a). Hence
it,1KClad) = it kTP, (i) = NN spre = 71003 veiiw) = fal.
P PP l
If, on the other hand, a E L* then (1.2) and chap.1l, (8.4) imply that
VU(NLIK(a)) = L'+lipf:P1pV<,p(a). Hence

NL1K<La]) = NLIK(n N = = [NvK(a)].

(vi) Let a; be the ideal of K which is generated by all NL1K(a), witha & mr.
If 211 is a principal ideal (a). then a1 = (NLw(a)) = Nt IK(Qli). by (v).
But the argument which yielded (v) applies equally well to the localizationi,.

Oplop of the extenl-ion CJio of maximal order!> of L IK. Op has only a finite

number of prime ideals, and i:;. therefore a principal ideal domain (1,ee chap. I,

§3, exercisc4). We thus get

(ai)p = NLK((2ldp) = N1,.d2I)p
forall prime ideals p of o, and consequently a; = NL1d2li). Ly

Since the homomorphisms iLiK and NtiK map replete principal ideab 10
replete principal ideals, they induce homomorphism€ of the replete Picard
groups of K and I, and we obtain the

(1.7) Proposition. For every finite extcn.€ion LjK, the following two
dfagrnms are commutative:

Pic(OL) & R
Pic(8x) —— R7.

Let us now tran€late the notiom we have introduced into the function-
theoretic language of divisor5. In chap. I, § 12, we defined the divisor group
Div(0) to consi€t of all fonnal sums

D=Lvpp,
where E Z, and 1p = 0 for almost all p. Contained in this group i€ the
group of principal divisor€ div(f) = LPh vp(/)p, which allowed w,
to define the divisor dw, group

CcHY(0) = 11 (0)P(o).
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It follow5 from the main theorem of ideal theory, chap.l, (3.9), that this
group is isomorphic to the ideal class group Cl k, which il- a finite group (see
chap.l, (12.14)). We now extend the5c conceph as followi,.

(1.8) Definition. A replete divisor (or Arakelov divisor) of K is :1 formal

where vp e Z forpfco, v E IR forploo, and vp =0 fora/most a// p.

The replete diviwrs fonn a group, which is denoted by Dil-(O). It admits
a decomposition

Div(8) € /Jiv(o) x EB IRp.
pix

On the right-hand €ide, the second factor isendowed with the canonical
topology, the !1r1-t one with the dil-crete topology. On the product we have the
product topology, which makes Dir(O) into a locally compact topological
group.

We now study the canonical homomorphism

div: K* -+ Div(0), div() = Lvp(p.
[

The clements of the fonn div(/) are called replete principal divisors.

Remark: The compo>ite of the mapping div : K* i Dil'(O) with the
mapping

Lvppi------- +(vpli,)pi,-X_,,
P
is equal, up to 1-ign, to the logarithm map
i K- [UF<. i.(/I€( ... loglflp- ).
4
. . * *
of Minkowski theory (see chap.l, 7, and chap. .~ 3, p.211).

chap. I. (7.3), it map" the unit group onto a complete lattice ' =
in trace-zero space H = {(.rp) € npixs IR I Lplex, 1p = 0}

(1.9) Proposition. The kernel of div : K* ;. )iv(O) i€ 1he group p,(K) o(
mars of unity in K, and its image P((J) is a discrete suhgroup of !)iv(O).
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Proof: By the above remark, the composite of div with the map Dil'(8) -
nPIXR, LP llpp -+ (vpfp)pl-x:... yicld'i, up to sign, the homomorphism
A: K* > nplx R. By chap. I, (7.1), the latter fits into the exact €equence

where I' Is a complete lattice in trace-zero space H S; TTwx.IR.
Therefore fI(K) is the kernel of div. Since I' is a lallicc, there
exists a neighbourhood U of O in TTplx R which contain€ no element
of I' except 0. Cuj\idering the isomorphism a : nploc IR » EBPI'XI Rp,
(vp)plx. r—+ LPIXIV: p, the &ct {0) x a U C /Jfv(o) x ffipxi Rp = Div(8)
is a neighbourhood ofO in /Jiv(O) which contains no replete principal divisor
except 0. This shows that P(O) = div(K*) lies discretely in Div(8). D

(1.10) Definition. The factor group
CH(0) = Div(0)/P(0)

is called the replete divisor class group (or Arakelov class group) of K.

As P(O) i@ discrete in Div(0), and is therefore in particular clo5ed,
CH *(0) becomes a locally compact Hausdorff topological group with respect
to the quotient topology. It is the correct analogue of the divif.or class group
of a function field (€ee chap. I, S14). Por the latter we introduced the degree
map onto the group Z; for C/1'(E5) we obtain a degree map onto the
group IR. It is induced by the continuous homomorphism

deg: Div(0)----- + R
which sends a replete divisor D = LP upp to the real number

deg(D) € 1>€ 1og11(p) @ log(T111(p)
P P

From the product formula (1.3), we find for any replete principal divi<;or
div(f) E P(O) that

deg(div(f)) €l:log'l1(p)",Ul€log(Tilfl,") 00
P p
Thus we obtain a well-defined continuous homomorphism
deg: CH(0)------- +r€.

The kernel C//*(<?)° of this map is made up from the unit group  and the
ideal das€ group CIK ;:: CH(0) of K as follows.
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(1.11) Proposition. Let I' = denote the complete lattice of units in
trace-zero space Il = {(xp) E | Lvirx xp = 0). There is an exact
.@equence

0 — H/I —> CH'(D)" —> CH"(0) — 0.

Proof: Let Div(0)® be the kernel of deg: Div(O) --+ IR. Consider the exact
sequence

where a((vp)) = LP x "7 Restricting to Dii-(i5)° yields the exact
commutative diagram

0 -+ A0*) @ P(Q) e - P(0) -+ 0
Ot H @ Div(0)° ----- + Div(a) -+ 0.

Via the snake lemma (€ce [23], chap. 111, *3- (3.3)), thi€y gives rie to the
exact sequence

0 — H/i(0") — CH'(5)° — CH(0) — 0. d

The two fundamental facts of algebraic number theory, the finiteness of
the class number and Dirichlet\: unit theorem, now merge into (and are
in fact equivalent to) the simple statemem that the kernel CH'(8)° of the
degree map deg: CH'(i5)--+ IR b compact.

(1.12) Theorem. The group CH*(8 )° is compact.

Proof: This follows immediately from the exact sequence
0— H/I — CH'(3)" — CH'(0) — 0.

As I' isa complete lattice in the IR-vector space H, the quotient H/ I isa
compact torus. In view of the finiteness of Cl/%(0), we obtain CH'(c™"0)° as
the union of the finitely many compact cosel€ of 17 1' in CH([i)°. Thus





CH((™0)° itself is compact.
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The correSpondence between replete ideals and replete divisors is given
by the two mutually inverse mappings

div: J(8) -+ Div(I75), div(TT ph» = L-vpP,
P [

1JV(0) -+ /(8), Lipp o TT o
P P

These are topological isomorphisms once we equip

3(0) = J(0) x %JRO
"

with the product topology of the discrete topology on .I(0) and the canonical
topology on npl:,.., IR:. The image of a divisor D = LP vpp is also written

o) = Npre.
P

The minus sign here is motivated by classical usage in function theory.
Replete principal ideals correspond to replete principal divi€ors in €@uch
a way that P(O) becomes a discrete subgroup of 1(8) by (1.9). and
Pic(O) = .I(i:5)/P(O) is a locally compact llau€dorff topological group.
We obtain the following extension of chap. I, (12.14).

(1.13) Proposition. The mapping div J@B) € Dii-(0) induces a
topological isomorphism

div: Pic(0) @ CHL(i5).
On the group 1(8) we have the homomorphism 1Jt: ./(i.5)---+ R€. and

on the group Dil'(i.5) there is the degree map deg: Div(i.5)---+ IR. They are
obviously related by the formula

deg(div(a)) € -log<Ji(a).
and we get a commutative diagram

[Op— . Pit(0)0---.  Pic(0) € E—(

00— CH'G) —> CH'(G) =R ——

with exact rows. (1.12) now vyields the





© 1. Pmnes 193

(1.14) Corollary. The group
PHoJ° @{1a E Pic(o) | <iie) &1
is rnmpacl.

The preceding isomorphism result (1. 13) invites a philosophical reflection.
Throughout the historical development of algebraic number theory, a controversy
persisted between the followers of Dedekind's ideal-theoretic approach, and the
divisor-theoretic method of building up the theory from the valuation-
theoretic notion of prime._, Both theories are equivalent in the scn<,c of the
above isomorphism result, but they arc also fundamentally different in nature.
The controversy has finally given way to the realization that neither approach
i5 dominant, that each one instead emanateli from it5 own proper world, and
that the relation between these worldli b expressed by an important
mathematical principle. However, all this becomes evident only in higher
dimensional arithmetic algebraic geometry. There, on an algebraic Z-&cheme
X, one litudieli on the one hand the totality of all vector hundfcs, and on the
other, that of all irredul"ihlc suhschcme:, of X. From the first, one com,tructs a
series of groups K, (X) which comtitute the subject of algebraic K-theory.
From the second is constructed a series of groups CH'(X), the subject
of Chow theory. Vector bundleli arc by definition locally free
ox-moduleli. In the special case X = Spec(0) this includeli the fractional
ideab. The irreducible subschemes and their formal linear combinations,
i.e., the cycles of X, are to be considered as generalization& of the primes
and divisors. The isomorphism between divisor cla5€ group and ideal clali&
group extends lo the general setting as a homomorphic relation between the
groupli CII' (X) and K (X). Thus the inilial controversy hali been resolved
intoa seminal mathematical theory (for further reading, see [ 13]).

Exerci,;e 1 (Strong Approximation Theorem), Let S be a finite et of prime€ and
lel pi1 be another prime of K winch doe€y not belong to S. Let (/p E K be given
numbers, for p ES. Then for every ¢ > 0, there exists an ¢ ¢ K €uch that
Ix-aplp<cfor pES, and IxIP € | for pr.Su {Pnl.

Exercise 2. Lel K he totally real, i.e, Kp = Ik for all Pl=- Let T bed proper
nonempty sub@et of Hom(K. H:). Then there ex1@\s a unit r of K @ati@fymg n >!
for, ESandO < u < | for, 1. 8.

Exercise 3. Show that the ab€olute nonn 91: Pil'(Z) > JR€) i€ an isomorpimm.
Exercise 4. Let K and L be number field€, and let, : K > 1. he a homomorphi€m.

Given any replete divi€por D = L"-J.I v-;p*I] of L. define a replete divi€or of K by
therule .
Wi =LJ L varmp e,
T
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where i€ the inertia degree of ,P over rK and 'PIP @ignilie€ rp = 'Pl,x. Show
that r, a homomorphism
r,: CHY(7y) . CHY("

Exercise 5. Given any replete divi@or D = LP VuP of K. define a replete divi€or of
L hy the rule

roD=LL wvyu<-uipp,
P VP

\\-here e,:p,p denote€y the ramilticatlon mdex of ,P over K. Show that r* induce€ a
homomorphi€@m

Exercise 6. Show that - = IL : Kl and that

deg(r,D) =deg(D). deg(r*D) = [L: Kldcg(D).

§ 2. Different and Discriminant

It is our intention to develop a framework for the theory of algebraic
number fields which shows the complete analogy with the theory of function
fields. This goal leads us naturally to the notions of different and discriminant,
a€ we shall explain in § 3and § 7. They control the ramification behaviour of
an extension of valued fields.

Let LI K be a finite separable field extension, cs @ K a Dedekind domain
with field of fractions K, and let O €L be iti,, integral closure in L. Throughout
this section we assume syi,,tematically that the residue field extensions AIK of
Ola arc separable. The theory of the different originates from the fact that we
arc given a canonical nondegenerate symmetric bilinear fonn on the K -vector
space L, 1.z, the trace form

T(ty) = Tr(ty)
(see chap. I, §2). It allows us to associate to every fractional ideal QI of L
the dual CJ-module
2( @ IxEL/Te(x'N)<;; v).

It is again a fractional ideal. For if a;. .a;; E CJ is a basis of LIK
and d = det(Tr(a1ay)) it€ discriminant, then ad*21. € CJ for every nonzero
aEQIno. Indeed, if x =xja;+---+xy,a,, E *21, with \; EK, thenthea,,
satisfy the system of linear equations L7=1aJ,.Tr(a.aJ) =Tr(,-uay E Q.
This implies dax; E o and thus dax E 0.
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The notion of duality is justified by the isomorphism
QQ(-=1.. HOMG(QL,0),  tiveres (Y 1o+ Tr(xy)).

Indeed. €ince o-homomorphi,;m /" : Q( -+ O extends uniquely to a

K -homomorphism  : L -+ K in view of Q(K = L, we may consider

Hom,?(Qt, cJ)as a submodule of HomK (/., K), namely, the image of *Q( with

re@pcct to L -—+ HomK (L, K), x 1+ (y 1-+ Tr(xy)). The module dual to CJ,
O = Homm((ﬂ,(’))l

will obviously occupy a distingui€hcd place in thi€y theory.

(2.1) Definition. The fractional ideal
€000 'O@/XE Ll Tc(xOJd c; 0)
i.€ called Dedekind’s complementary module, or the inverse different. Its
inverse,
Do = qﬁ'\ol
i@ called /he different of Ola.

As ittllo 2 O. theideal :Tigo S; CJ is actually an integral ideal of L. We
will frequently denote it by I) 1iK. provided the intended €ubring€ a, CJ arc
evident from the context. In the @ame way, we write i[Lik imtcad of ito1q.
The different behaves in the following manner under change of rings O
and 0.

(2.2) Proposition.
(i) For a tower of field. @K S; L S; M, one ha€'DMIK = 'DM1L'DLIK.
(i) For any multiplicative subset S of o, one has :Ti5-1p1s-10 = S-Lpoio-

(iii)  Ifq]lp arc prime ideals of CJ. resp. 0. and 0,:ulo€ are the a.@sociated
completiom, lhen
DojoOp = Doylo, -

Proof: (i) Let A=0S; K, and let B S; L, C S; M be the imcgral clo@urc
of o inL, resp. M. It then suffices to show that

Ceia = Coirlaa-
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The inclmion 2 follows from

Trtw K(IECIRItR1AC) = TrLIK TrM1d(fc:RitR1AC)
=TrL K( ifRIATIMLdItc1BC)) <iA.

In view of BC = C, the inclusion<; is derived as follows:
TrMIK (IfciAC) = TrL1K ( B TrMiditc AC)) <; A,

so that TrM1ditc14C) <; ([RIA, and thus

TrM t (i Ae:CiAC) = itB:ATrM11.(Ilci,1C) £;; B.

This does indeed imply Q.fl*aicia £;; I'c1H, and so itc1A £;; Q.cCiH<'RIA:

(i) i€ trivial.

By (i) we assume that o b a discrete valuation ring. We show that
'o1,_@is dense in In order to do thi,;. we use the fonnula

Triuk = L Trevikp
“HIP
(5ee chap. II, (8.4)), Let x E itg10 and y E CJ,,p. The approximation theorem
allows u€ to tin<lan T/ in L which is dose to _v with respect to v13, and clo@e
to O with respect to V-J.I' for !,p'lp.!,p'-=/=!,p. The left-hand side of the equation

TrLIK(XT}) = Trl.'VIKp(XT}) ++"3,. 1TrLvIKp(xrl)

then belongs to o] since Trl.1K(n1) E o <; op, hut the same is true of the
elements - hecau€e they arc close to zero with re€pect to vp.
Therefore TI’L,U\K,(I E Op. Thb shows that ito10 £; .

Tt on the otherlhand x € ((0-+0", and if@ E L is sufticienlly close
to x with respect to and sufficiently close to O with re-;pcct to 1!e:p".
for I,p-=/= 1,p, then@ € In fact. if y € C'J, then TrL,vIKp(€y) E op.
since Trpgik, (Xy) € Op. Likewise TI‘L\B,‘KV(Ey) e op for I,p'll,p, because
these elements are close to 0. Therefore Try x (§¥) € 0o, NK = 0. ie.
S E . This shows that Co|» i$ dense in €oyo,. in Other words.

= Coylo, and $0 DojoOp = Doylo,- [m]

If we put:1) = and :1J,; = "DLpIKp, and consider 'D<p at the same
time as an ideal of CJ as the ideal CJn ::U,p), then (2.2), (iii) gives us the

(2.3) Corollary. '.D = ﬂ13‘.D;;p.
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The name "different" is explained by the following explicit description,
which wa€p Dedekind's original way to define it. Let a E O and let
f(X) E v[XJ be the minimal polynomial of a. We define the different
of the element a by
J'(a) if L @ K(a),

or.ida) = Jo ifL i- K (a).

In the @pecial case where O = o[al we then obtain:

(2.4) Proposition. IfO = ofal, then the different is the principal ideal
TIL K ¢ (8L1da))

Proof: Let f(X) =ao+a;X + **+ a;,X" be the minimal polynomial of a
and

(X
EALTE =bo+ b X 4+ by X"
X—a
The dual ba>i€ of I, rx, ... ,a" ! with respect to Tr(xy) is then given by
ho h11--1
L. @)
Forifai, ... ,aj1are the roots off, then one has
i X o)
[ i & 0<r=<n—1]
iz X —a flle)
as the difference of the two sides is a polynomial of degree ::: n - | with
roots aj .an, rn is identically zero. We may write this equation in the

fonn
er! K f'(a) Q

Considering now the coefficient of each of the power5 of X. we obtain

a1 RARD )68,
and the claim follows.
AsO =O+Oa+"'+0a11—1,weget
cro10 = f(a)-*(oho+ +nhn-d-

Fmm the recursive fonnulas
b1 =1,

bypa—aby_y = ay.1.
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it follows that
bt =™ a0 Tt agi |

so that oh, +* * + oh;; 1 = o[a] = O; then .05 = f(a) 10, and
thus'DLIK = (_f(a.). 0

The proof shows that the module *o[a] = /x EL | Tr,.1K(xo[aj) € V),
which is the dual of the o-modulc ola]. always admits the v-basis a' /f'(a),
i=0, ,n- I. Weexploit this for the following charactcrit:ation of the
different in the general ca:;e where O need not be monogenous.

(2.5) Theorem. The different ".DLIK i, the ideal generated by all differents
ofelementsliLiK(a) fora EO.

Proof: Let a E O such that L = K(a), and let f(X) bethe minimal
polynomial of a. In order to show that f'(a) E "DLIK- we consider the
"conductor” f = =\X E LI tO 5;; o[a]) of ofal (see chap. |, §12,
p. 79). On putting = f'(a), we have for x EL:
t e f <=} xO £ ofal = b 'xO C b olu| =0lal
<=3 Tr(h 'X0)£;;0-¢=} h xE.DL K! {1} XEh:'DE. K.

Therefore (f'(a)) = fo1"1.DL1K, s0 in particular. (a) E'Dt,1K-

3J,. K thus divides all the differents of clement€ 8, IK (a). In order to prove
that "DLIK is in fact the greatest common divi€por of all 811K(a), it @uffices
to @how that, for every prime ideal I.p. there cxbt€ an a E () such that
L = K(a)and v,p()LIK) = V-+.1(f'(a)).

We think of L as embedded into the separable closure Ko of Kp in 5uch
a way that the absolute value | | of KP delines the prime €.

By chap. Il, (10.4), we lind an element f3in the valuation ring0'+-1 of the
completion Lqd satisfying O,:;p = Op[/31. and the proof foe. cit. shows that.
for every clement a £ 0'13 which b sufliciently close to {3, one also has
O,:p = Op[a]. From (2.2), (iii) and (2.4), it follows that

113(.\DLIK) = v, p(:'Dt,iilkp) = v,:p(0Li,1K/a))
It therefore suffices to show that we can find an clement a in O such that
L = K(a) and
V<ip(,h'Vwp(a)) = v'-J.I(OL!K(a)}
For this, let 2. er, : L —+ KP be K -embeddings giving the primes 1.13; IP
different from Lp. Leta E op be an element <uch that

> Irfi-al=1 forall rEGp=G(KplKp).
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(Choose a =1, rc&p. a = 0, according a5 the residue classe5 rfJ mod 13
which arc conjugate over tJp/P arc zero or not.) Using the Chinese remainder
theorem, we now pick an a E O rnch that la-,81 and la,a-al, for
i=2,..,r arevery small. We may even assume that L = K (a) (if not,

modify bya+n"y, n ep,forv big, y E 0, L = K(y); forsuitable u-=/=-JL,
one then finds K(a +nvy) = K(a +nt'y) = K(y)). Since a is close to ,8,
we have O'l-l = Op[a]. Now

sLikr@= 1T @ - ra),
st

where r rum through the Kp-embeddings L'l-I -+ KP different from I.
Furthcnnorc,

8Lw(a)= TT(a-aa)= nca-ra)llnca-r1JrT10",
acjicl ritel 1=1 J
where a runs over the K -embeddings different from I, and the ry; arc certain
elements in Gp- But now
la- riymal = Ir@'a- alal = Ir@'a- a+a - aal =1,

since la- aal is very @mall, and r,.@'a i€ very clo@c to  /J (see ().
Therefore viiitiLIK (a))= VII(TT,11(a - ra)) = asrequired.
[m]

The different characterize@ the ramification behaviour of the extension
LjK as follows.

(2.6) Theorem. A prime ideal 13 of L i.¢ ramified over K if and only if
‘LAK-
Let 13-' be the maximal power of 13 dividing "DLIK, and lei e be the
mmification index of13 over K. Then one has
s=e- 1, if13 is tamely ramified,

- |+ vipe), if13is wildly ramified.

Proof: By (2.2), (iii), we may assume that 0 isa complete discrete valuation
ring with maximal ideal p. Then, by chap. I1, (10.4). we have O = tJ[al for
asuitable a £ 0. Let f(X) be the minimal polynomial of a. (2.4) say5 that
s=v,,u(l'@)). As@ume LIK i€ unramilied. Then i = a mod 13 i5 a simple
tero of f(X) = f(X) mod p, so that J'(a) E 0* and thuss =0 =e- I
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By (2.2), (i) and chap. I1, (7.5), we may now pas<, to the maximal unramified
extension and assume that LI K il- totally ramified. Then a may be chosen
to be a prime element of 0. In thi5 case the minimal polynomial

f"(x):aOX"+a1X"—1+---+ue, ao= 1, is
an Eisenstein polynomial. Let us look at the derivative
f'(a) = eana" 1y (e- I)ala"—2+ +ae-1+
Fori = 0. ,e- 1, we find
v.u((e - i)acle--H =evple- i) +evp(@a,+e- i- I= -i - 1 mode,
so that the individual terms of J'(a) have distinct valuations. Therefore
s= I0(F(ey) = Vi, { vale- Daa--Y)

If now LIK is tamely ramified, i.e, if vpe) = 0, then the minimum
ii. obviously equal to e - 1, and for 1jp(e) i |, we deduce that

euSs uSwvrpe) te- I Q

The geometric significam:e of the different, and thus also the way it lit€
into higher dimensional algebraic geometry, is brought out by the following
characterization, which is due tot:. KAHLER. For an arbitrary extension BIA
of commutative rings, consider the homomorphism

J:Bea 8 -+ B, x®y

Xy.
whrn;e kernel we denote by /. Then
DhA := ///* =/ ®RoR 8
is a B ® B-module, and hence in particular alsoa B-module, via the
embedding B -— B ® B. hu- h® 1. It is called the module of differentials
of BIA, and ib elements are called Kahler differentials. If we put
dx =x® 1 - 1@x mod /2
then we obtain a mapping
d:B—s 24,
satisfying
d(xy) = xdy + ydx.
da=0 for ae A

Such amap b called a derivation of BIA. One can show that dis universal
among all derivations of BIA with values in B-modules. DhlA consists of
the linear combinations Ly,dx‘ The link with the different is now this.
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(2.7) Proposition. The different :Dc,10 is the annihilator of the 0-
module S22J1, i.e.,

:Dolo={xXEO[ r:dy=0 forall yEO).

Proof: For grealer notational clarity, let m, put O = B and a= A. If A'
is any commutative A-algebra and B' = B @.4. A". then it is easy to 5Ce
that E?k.lA' = £7%1,1 ®1 A’ Thu5 the module of differentials is preserved
under localization and completion, and we may therefore assume that A is
a complete discrete valuation ring. Then we find by chap. Il, (10.4), that
B = A[XJ. and if /(X) E A[XI i& the minimal polynomial of x, then QRIA
is generated by dx (exercise 3). The annihilator of d.i j5 f'(x). On the other
hand, by (2.4) we have :DBIA = (f'(x)). Thi€ provc5 the claim. D

A mosl intimate connection holds between the different and the
discriminant of CJlo. The latter isdefined as follows.

(2.8) Definition. The discriminant r:ig10 i.€ the ideal of o which is generated
by the discriminants d(a1, ,a,) ofall /he bases ag, ....a,, ofL IK which
are contained in 0.

We will frequently write Lk instead of llaio. If 01, ,an i@ an
integral basis of Olo, then ri, IK is the principal ideal generated by
d(a1, .. ,an)=dLik. because all olher bases contained in Oare tran&fonn€
of the given one by matrices with entries in n. The discriminant i€ obtained
rrom the different by taking the noon N, ik (see S1).

(2,9) Theorem. The following relation exi€b between the discriminanl and
the different:
ik =Nux(®rix).

Proof: If S is a multiplicative sub5et of O, then clearly ri¢

S-1r:i01u and :Ds-iois 1y = S—1:Dc,1u We may therefore as@ume 0 is
a discrete valuation ring. Then. since 0 is a principal ideal domain, so isQ)
(see chap. I, 83, exercise 4). and it admil€ an integral basis a1. ., a,,
(see chap. 1, (2.10)). So we have L1k = (d(a. ,aw) Dedekind's

complementary module a,
which i1> characterized by isa
principal ideal (/3) and admits the ... , f3an of discriminant

d(f3al, .. f3all) = NLIK(3)%d(al,..... al1).
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But (N, 1;dfi)) = N1.1d!lo10) = = NL1d'DL1K>-Y, and
(d(a an))= DLIK- One ha@ d(a1.. = dct((a,ad))2.
d(a;. a;,)= for a, E HomK(L.K), and Tr(a,a;) = Oy,
Then d(a;. ... an) ... ,€<i) = 1. Combining these yields

bl = (d(a1, ... an)-Y) = (d@ls . .a;)= (d(ffo:rl, a1
= KIL1K<‘.DL1K)— DLIK

and hence NLw('JJL1K) = i)LIK+ L

(2.10) Corollary. For a tower of fields K S; L € M, one has

DMIK = D@ NLIK(IlH1d-

Proof: Applying to.DMIK ="DM1L"DLIK the norm N11J1K = Nrw ¢ N,1111,
(1.6) give@

1
DMIK = NL K (IMLNLIK(J39:@/ 1) = N1 w(iM1ID@ /. ]
Putting i) = otk and Dp = and viewing O;p al50 a€y the ideal
likpn o of K, the product formula for the different, together with

theorem (2.9), yields:

(2.11) Corollary. D= Tl,:pi.ll

The cxtenSion LI K is called unramified if all prime ideals p of K arc
unramitied. This amounts to requiring that all primes of K be unramilled.
In fact, the infinite primes are always to be regarded a€y unramified
because "NIp = |

(2.12) Corollary. A prime ideal p of K is mmitied in L if,.md only ifpID.
In particular, the extension LI K i., unramified if the di:.criminant D = (1).

Combining this result %ith Minkowski theory lead€ to two important
theorems on unramitied extensions of number llcld, which belong to the classical
body of algebraic number theory. The first of the:,e results is the following
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(2.13) Theorem. Let K be an algebraic number field and Jct S be a linilc
set of primes of K. Then there exist only finitely many extensions LIK of
given degree n which are unramified outside of S.

Proof: If /,IK is an cxtcn5ion of degree n which is unramificd outside of S,
then, by (2.12) and (2.6). it5 di5criminant iiLIK is one of the finite number
of divisors of the ideal n = n<ccS“ pn{l+nl. It therefore suffices to show

that there arc only finitely many extension:,, LI K of degree n with
discriminant. We may assume without loss of generality that K = For
if LIK is an extension of degree n with discriminant i!, then L 11Q is an
extension of degree m = nfK: QI] with discriminant (d) = 11QNKNI(i:l)
Finally. the discriminant of L( J=T)IQ differs from the discriminant of LIQ
only by a conStant factor. So we are reduced to proving that there exist
only finitely many fields K 1Q of degree n containing R with a given
discriminant d. Such a field K has only complex embeddings 7 : K----+
Choose one of them: To. In the Minkowski space

K}:[UC]1

(5ee chap. 1, §5) consider the convex, centrally symmetric subset

X ©{()EK:, | im(,.31 < c/jdij.
1Re(zro)1< 1, lzrl < 1 for T-=/- ToJo).
where C is an arbitrarily big constant which depends only on 11. For a
convenient choice of C, the volume will satisfy

vol(X) > Z“JTJT = 2n vol(oK),

where vol(oK) is the volume of a fundamental mesh of the lattice
in Ket - secchap.l, (5.2). By Minkow:,ki", lattice poinl theorem
(4.4)), we thw, find a E OK, a-=/- 0, @uch that ja = (ra) E X, that is,

*  lm(roa)l < C\/IJT, IRe(roall < I. Iral <1 for r-1- To, To.

This a i€ a primitive element of K, i.e,one has K = Q(a). Indeed,
INK1v,(a)l = nr 1aml?. | implies IToal > I; thus Im(Toa) -=I-() so that
the conjugates Toa and Toa of a have to he distinct. Since ITai < 1 for
7 -=I- To.To, one has Toa -=I- Ta for all T -=I- To. This implies K = Q(a),
because if Ql(a) @ K then the restriction Tok€wl would admit an extension
T different from To, contradicting Toa -=I- Ta

Since the conjugate:,, Ta of a are subject lo the condiliom (*), which
only depend on d and n. the cocfficicnh of the minimal polynomial of a
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arc bounded once d and n are fixed. Thus every field K IQ of degree n witf
discriminant d is generated by one of the finitely many lattice points a in the
bounded region X. Therefore there are only finitely many fields with given degree
and diScriminam. D

The second theorem alluded 10 above is in fact a strengthening of Ihc fir@t.
It follows from the following hound m1 the discriminant.

(2.14) Proposition. T/ie discriminant of an algebrnic number field K of
degree n s:itislics n
" mAr2
a2 = 7(7) .
ni\4

Proof: In Minkowski space K = [Tir ] 4. r e Hom(K, C), consider the
convex, centrally symmetric subset
X, 1) EKe 1 @ Ic1 <.
Its volume is o
vol(Xy =215 .
n!
Leaving a&ide the proof of this formula for the moment (which incidentally
was exercise 2 of chap. I, 95), we deduce the proposition from Minkow €ki's
lattice point theorem (chap. I, (4.4)) a€ follow;,. Consider in KIR the lattice
r = .fo defined by 0. By chap. I, (5.2), the volume of a fundamental mesh
w

i, vol(r) = JI"CIKT. The inequality

vol(Xy > 2n vol (/")
therefore holds if and only > 2'@, or equivalently if

n =f|!(or jfdi1+ e

for some £ > 0. If this is the case, there exists an a € v, a |- 0. such
that ja E X, Asthis hold;, forall e > U, and since X, contain& only
finitely many lattice points. it continue;, to hold fort = 0. Applying now the
inequality between arithmetic and geometric mcam,

D, 12:(n1,,1)".
no .
we obtain the de;,ircd result:
1< INK1lo(a)l € CT!ml <. | o::lml)" <t"_ @ 1 (.4.)/1dKI
r " nn T

'S @(4)11/2jfd;1_
o

Given this, it remain€ lo prove the following lemma. C
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(2.15) Lemma. In Minkowski space Kirt = [[1; C]> . the domain
X, @{1)eK, 1€ 1,1<:l

has volume
vol(Xr) =2'n L.+
n!
Proof: vol(Xr) is 2! times the Lebesgue volume Yol(f(X1) of the
image f(X,) under the mapping chap. 1. (5.1).

fooKip . m (2.) it (X)),
where x/! = zp, Xa = Re(za), xir = Im(za). Sub,;;tituting 11+ = 1, T,
instead of x/!. and vJ.:1, j =1, s,instead of Xa,Xrr, we sec that f(Xr)

is described by the inequality

Ixil + X+ 2f sk Zf eeet 20 vO+ @<t
The factor 2 occur5 becaw,e 1z;;1 = 12a 1 = la |. Passing to polar coordinate™
Yi= Ujcos01, z1 = u;sin0;- where O =i 07 = 2n, 0 =!I up, one sees that
Yol(F(Xi)) i computed by the integral

M= Tm...um\l dx,d111+-*du,d01, dO_.

extended over the domain

IXLI+---+ IX, I+ 2ul + + 2us

Re@tricting this domain of integration to x, ==: 0, the integral gets divided
by 2r Substituting 2u; = w; gives

/() = 2r4 2nyt,.,., (1),
where the integral
G f W1-eew,d77+-edx,dwl  dw.,

has to be taken over the domain .1, ==: 0. w; ==: 0 and
x Fxe b |- w =<l

Clearly /;,.,(1) = t+2,,()=,n1,.,(1). Writingx2+- -+X; +wW,+- -+\
=t -ty inbtead of(*), Fubini"s theorem yields

/,.0.(1) =I flir1.q —xi)d.11=l w1 - \ptaxd /,-1,,()
0

= -, 1.).
n
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By induction, this implies that
|
1., €)= n(n-De-n-r+)10.:(1).
In the same way, one gets

lo_.,()= 1 1w].(l -wlp"™-2dwifo,.,-1(1),

and, doing the integration, induction shows that

| |
lo_,(1) = &5} /0.00) = (pua! *

Together, this gives/,.,.,(!)=€ and therefore indeed

Vol(X,) = 2°Vol{ (X)) = 2274~ @) "], 5(1) = 2t :I

!

If we combine Stirling":c. fonnula,
now
nl :«/Zﬂn(ﬁ) e, 0<f<1.

-

with the inequality (2.14), we ohtain the inequality

21
IdK 1> (")~ _!_ent
4 2rrm

This €@how& that the absolute value of the di€criminant of an algebraic
number field tends to infinity with the degree. In the proof of (2.13) we saw
that there are only finitely many number fields with bounded degree and
discriminant. So now, since the degree is bounded if the di€criminant i&, we
may @trengthen (2.13), obtaining

(2.16) Hermite's Theorem. There exist only finitely many number fields
with bounded discriminant.

The expression a11= satigfies

© = (120t €11 |,
lin 4 "

ie, aner > a,. Since a2 = @ > |, (2.14) yield<;
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(2.17) Minkowski's Theorem. The discriminant of a number field K
different from Q is f=. 1.

Combining this result with corollary (2.12), we obtain the
(2.18) Theorem. The field Q does not admit any unramitied extensions.

These last theorems are of fundamental importance for number theory.
Their significance i€ seen especially clearly in the light of higher dimensional
analogues. For instance, let us replace the finite field extensioni,, LIK of a
number field K by all smooth complete (i.e., proper) algebraic curves defined
over K of a fixed genus g. If p isa prime ideal of K, then for any i,,uch
curve X, one may define the “reduction mod p". This is a curve defined
over the residue class field of p. One says that X has ,.:0od reduction al the
prime p if its reduction mod p is again a smooth curve. This corresponds
to an extension LIK being unramified. In analogy to Hermite's theorem,
the Russian mathematician I.S. sm:arn 1t formulated the conjecture that there
exist only finitely many smooth complete curves of genus g over K with good
reduction outside a fixed finite set of primes S. This conjecture was proved
in 1983 by the mathematician Gnw FAWNGS (see [35]). The impact of this
result can be gauged by the non-expert from the fact that it was the basi€ for
F,1ulNn\-'s proof of the famous Mordell Conjecture:

Every algebraic equation

of genus g > | with cocfficienrn in K admits only finitely many solutions
in K.

A I-dimensional analogue of Minkowi,ki's theorem (2.18) was proved
in 1985 by the French mathematician J.-M. Fo!'ITAJI'li:,: over the field Q, there
are no smooth proper curves with good reduction mod p for ail prime
numbers p (see [391).

Exercise 1. Let d@) ..a" 1),foranelementa e Osuchthatl = K(a).

Show chat D1 ;K 16 generaled all discrimi die)if ois a

di@crcte valuation ring and re@idue field tension |« is scparable. Innothbere are
word)\, equal @ the ged of all di€crimmant€ ofndnvndu.xl elemenls Thitatfilerwe.1
to hold  general. Counterexample: K = L =@, o — o — 2o — gntfiche
(Sec [601, chap. II, §25, p.443. The umransla\able German (,d\(,h phrase  Disl,.riminam
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Exercise 2. Let be a Galois extension of hen€elian field€ with €eparahle residue
field cxlen3zion and let G, i m-_ 0. be the i-'h rarmfication group. Then, if
:Drik = "IJ. one

-
nint: If O = o[xI (.,ee chap. IL (10.4)). then 1 = 11i.(lillke) = Lacr; 111(< -en)

Exercise 3. The module of differentiah 2, , is generated by a €ingle element d.1.
rE 0, and lhere 12 an exact @eduence ~O-modules

0

. 1D010 .0 -, QCOI0

Q

Exercise 4. For a tower M 2 L 2 K of algebraic numher field€ there i% an exact
©equencc of 0,11-modules

0--¢> £2IK0 n.11--;, Q@IK—;,. L = 0.
Exercise 5. If ( 1¢ a primitive p -th root of unity, then

= I ey,

§ 3. Riemann-Roch

The nption of replete divisor introduced into our development of number
theory in | is a lenninology reminiseem of the function-lheoretic model.
We now have to ask the que:,tion to what extent thi:,, point of view docs
justice to our goal to also couch Ihc numher-theorelic ntiults in a geometric
function-theoretic fashion, and conversely to give arithmetic significance to
the da:,,:,ical theorems of function theory. Among the latter. the Riemann-
Roch theorem stands out as the most important representative. If number
theory is to proceed in a geometric manner, it must work towards tinding an adequate
Yay to incorporate hi:,, rcwlt a:,, well. Thi€ is the task we are now going lo
tackle.

First recall the classical :,,ituation in function theory. There the basic data is
a compact Riemann :,urface X with the :,,heaf 0X of holomorphic functiom.
To each divisor D = LPcX I'pP on X correspond:,, a line bundle o(D),
i.e.. an ox-module which is locally free of rank 1. If U i<s an open :,ub@ct
of X and K(U) is the ring of meromorphic functions on U. then the vector
space o(D)(U) of section:,, of the sheaf o(D) over U is given as

o(D)(19) @ { f E KW)I ocdp(f) c-<p fond! PE U}.

The Riemann-Roch problem i;, to calculate the dimension





£(D) = dimH°(X.0(D))
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of the vector space of global sections

1"(X,0(f))) € o)(X).

Inits fin,t version the Riemann-Roch theorem does not provide a formula for
H°(X. o(D)) itself. but for the Euler-Poincare characteristic

x(0(0)) @dimH"(X,0(D)) -dimH'(X,0(D)).
The formula read€

x(oUJJ) @deg())+I-g.
where g is the genus of X. For the divisor D = 0, one has o(D) = ox
and deg(D) = 0. €o that x(ox) = | - g; then this equation may abo be
replaced by
x(o(D)) = deg(D) + x(ox).
The clagpsical Riemann-Roch formula
£(DI- £IC- DI degDI+1-g

i€ then obtained by using sennt. duality. which state€ that H'(X,0(D)) is
dual to HO(X.w®0o(-D)), where « = DI is the ">O-called canonical
module of X, and K, = div(w) is the associated divisor (€ee for instance
[511.chap.lll, 7.12.1 and chap.lV, 1.1.3).

In order to mimic this state of affairs in number theory, let us recall the
explanation€ of chap, I, 8§14 and chap. Ill, §l. We endow the places p of
an algebraic number field K with the réle of points of a space X which
@hould he conceived of a€p the analogue of a mmpat t Riemann surface. The
clements / E K* will be given the rOle of '-meromorphic functions” on
this ">pace X. The order of the pole, re,;p. Lero of f at the point p E X,
for pf x, isdefined tobe the integer vp(./), and for ploc it is the real
number vp(/') = - log Icfl Inthi€p way we a@sociate to each f £ K* the
replete divi.,or

div()= Lvp@)p E Dil-(0).
P

More precisely, for a given divisor n= LP vpp, we are interc.:,ted in the
replete ideal
o) =TT p-,1,
'
and the set

H @I @If ex | dive) 2 -0/





@Il Eo(DI,10sf 1/1,571(p3" locploc,
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where the relation D' :::_ D between divisors D' = LP v@p and D = LP e
is simply defined to mean v: vp for all p. Note that 11°(0(/J)) is no longer
a vector space. An analogue of H*(X,0(D)) is completely missing. Instead
of attacking directly the problem of measuring the size of H°(0(/J)), we
proceed as in the function-theoretic model by looking at the "Eulcr-Poincare
characteristic* of the replete ideal o(D). Before defining this, we want
to ei, tablish the relation between the Minkowski space Kirl. = [ﬂl‘ [
r € Hom(K, C), and the product TTPI= Ky, The reader will allow us 10
explain this :;.imple situation in the following sketch.

We have the correspondence:;,

p K> R real prime, p =Pp; Kjj IR,

aJf: K » complex prime, a=  op: Kp ___.C

There arc the following isomorphism€

K ®y R — Kg, a®xr— ((ta)),,

K®3R —> [1Kp. a®x+— ((gpa)x)

Pl

ploe’

rp being the canonical embedding K --+ Kp (see chap. Il, (8.3)). They lit
into the commutative diagram

KeR - K, NR x rmcxcw
,r Tnl, eTI‘I[«,m\
K@IR . Nk Nk, &,
PIN pre,il p complex

where the arrow on the right isgiven by ar  (aa,?fa). Via thi€ i€pomorphism,
we identify K:1 with TTPI"- Kp:

Ky =[] K.

bl
The scalar product (.1, y) = Lr Y, on K@ isthen transformed into
xy)= L wp+ (ep ¥y + Xpyp)-
pre,d





The Haar measurep, on Killc which is determined hy {\, v) becomes the
product measure
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where .
Jip = Lebesgue measure on Kp = IR, ifp real,

flp = 2Lebe5gue measure on kp = :C, ifp complex.
Indeed, the sy@tem 1/./2, i/./i is an orthononnal basis with respect to the
<,calar product x_V + ty on KP =C Hence the square Q = {-- = 1 +iy |
0 s ry _s 1/./i) has volume p,p(Q) = I, but Lebesgue volume 1/2.
Finally, the logarithm map

e [1:]@*]+ — [UR]*, 5+ (loglxr]),

studied in Minkow€pki theory is transformed into the mapping
i NK;-nR. w
plx, ploc
for one has the commutative diagram

+(loglx,1,).

ki —— [[IB]

! !

4
[Ty K3 —— Ty B

where the arrow on the right,
|n:R\]|0n,0x meoox oW - anZ
T fl 0 PI™

j<, defined by \ 1+ x for p ++ p, and hy (.1,.,) 1+ 2x for a ++ p.

This isomorphism takes the trace map x 1+ L,Xx, on [TT,|Pi.]+ into
the trace map x 1-+ Lpi:x, xp on TTPI"- 1P/, and hence the tracc-.tero space

H=/.1 E[TTrRtl L,<,=0) iniothetrace-zero€pace

He{xc NRI I: X, €p0).

Pix, PIrx

In this way we have translated all necessary invariants of the Minkowski
space Ki to the product TTPI"" Kp,

To a given replete ideal
a= ot-1ro0= n pox TTph
pem P

\Wse now a€psociate the following complete lattice ja in Kw., The fractional
ideal a; @ K is mapped by the embedding j K Ky onto a
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complete lattice Jar of K, = Kp. By componentwise multiplication,
a™ = nploc p™ = (. ,e"p, yield<; an isomorphism

ax:,: Kw_-—+ Kirt,  (Xp)plx., f--+ (I"rxp)plc,,
with determinant

*) det(n@) € TT,,../.€ TT'l(p)" & 'I(n).
Plex, P
The image of the lattice jai under this map is a complete lattice
ja = axJar.

Let vol(a) denote the volume of a fundamental mesh of ja with respect to
the canonical measure. By (*), we then have

vol(a) = 1Jt(ocx.,) vol(a1).

(3.1) Definition. 1f a is a replete ideal of K, then I11e real number
x(a) = - logvol(a)
will be called the Euler-Minkowski characteristic of a

*
fhe reapon for this tcnninology wiil become clear in™" 8.

(3.2) Proposition. The Euler-Minkowski characteristic x(a) 011/y depcnd8
on the class ofa in Pic(8) = J(8)/P(0).

Proof: Let la]= [al;- 1a]'’X) = (a) x [ak be a replete principal ideal. Then
one has

lala = aar X [@lococ |
The lattice is the image of the lattice ja, under the linear map
ja Kl (xp)p"XI 1-+ The absolute value of the determinant
of this mapping is obviomly given

Idet(jaJl € TT lale @ TT 'li(p)-
P px,

1 "llllak)_,

For the canonical meawre, we therefore have
vol(aai) = Jt([a];c,)-vol(ar).
Taken together with (*), thi€p yields
vol([a]a) = N1(fa]'X)a,.,..,) vol(aai) = “TT(a"") vol(ar) = vol(a).
sothat x('ala) = x(a). D

The explicit evaluation of the Euler-Minkow,;ki characteri€tic results from
a result of Minkowski theory, i:iz., proposition (5.2) of chap. I.
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(3.3) Proposition. For every replete ideal a of K one has

vol(o) ~ /jd;11I(0).

Proof: Multiplying by a replete principal ideal [a] we may assume, as
vol(laja) = vol(a) and 91([ala) = 91(a), that a is an integral ideal of K. By
chap. I, (5.2) the volume of a fundamental mesh of a1 is given by

vol(ai) = jfd,;T(o: az).
Hence

vol(a) = N(as) vol(ay) = Nax)y/ |dk | R(ap) = /|dx | N(a). [m]

In view of the commutative diagram in § 1, p. 192, we will now introduce
the degree of the replete ideal a to be the real number

deg(a) = = logNI(a) = deg(div(al).
Observing that
x(0) ~ = log /Td;l.

we deduce from propo'-ition (3.3) the first version of the Riemann-Roch theorem:

(3.4) Proposition. For every replete ideal of K we have the formula

x(a) = deg(a) + x(0).

In function theory there is the following relationship between the Euler-
Poincare characteri:c.tic and the genus > of the Riemann surface X in question:
x(0) = dim Ho(X .Ox) - dim H1(X ,0x)=1 - g.

There is no immediate analogue of H }(X. CJx) in arithmetic. However, there
is an analogue of H°(X.ox)- For each replete ideal a= fipprp of the
number licld K, we define

Ho@) =\ f e+ | vp() 2: vp for all p).

This i5 a lnite set because jli%(a) lie€ in the of the lattice jai S; Kif
which is bounded by the conditions Iflp .:S PI'XI. As the analogue of
the dimemion, we put {(a) = 0 if //°(n) = 0, and in all other ca:c.e:c.
#/10(0)
£(a):= log yolOAN
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where the normalizing factor vol(W) is the volume of the set
we I<c,)EK,@]l;icrll,1:'1).

This volume is given explicilly by
vol(W) = zr(2rr)",

where r, resp. s, is the number of real. resp. complex, prime€y of K (see the
proof of chap. I, (5.3)). In particular, one has

0 #11,(K)

H (0) = JI(K). sothat f(o) = log zrezrr
because Iflp :S 1 for all p, and TIP I/lp= | implies Iflp = | for all p, so
that H°(0) is a finite subgroup of K* and thus must consist of all roots of
unity. This normalization leads w, necessarily to the following definition of
the geom, of a number field, which had already been proposed ad hoc by the
French mathematician ANDRE wm. in 1939 (sec [I.381).

(35) Eeflnmon, The genus of a number field K is defined to be the real
number #1,(K)ITil T
g=iMV- X(0) =log-e»-

Observe that the genus of the field of rational number<; Q is 0. Using thi:;.
definition, the Riemann-Roch formula (3.4) takei,. the following shape:

(3.6) Proposition. For every replete ideal a of K one ha:;.
x(a) = deg(a) + £(0) - g.

The analogue of the strong Riemann-Roch formula
£(D) @ deg(D) + | - g +EK - /)
hinges on the following deep theorem of Minkow<;ki theory. which i<; due
to sercF Lanc and which reflects an arithmetic analogue of Serre duality.
A:;. usual, let r. resp. s, denote the number of real, rel-p. complex, primes,
and11=1K:QJ.

(3.7) Theorem (S LANG). For replete ideals a= nr p™p E J(0 ), one has

1. 2@y !
#H"(a- ) @ LIl (@) o(@(@)' )

if91(a) —+ 00. Here, a.€ usual, O(t) denotes a function suc/J that O(t)/t
remainl,, bounded ast ---+ X.
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For the proof of the theorem we need the following

(3.8) Lemma. Leia, ,o11be fractional ideals representing the cla.sses of
the finite ideal class group Pie(a). Let( bea positive conMant and

21={o=TTP"P| n1=a, 91pP 2 co1(@)L"2* for Ploo)
P
Then the constam ( c:m be chosen in such a way that

1(6) @ L:fl '21,P(i5).

Pr-oof: Let 23, = {a E ,I(0) | nr = 01). Multiplying by a suitable replete
principal ideal [al, every a E J(o) may be transformed into a replete
ideal a' = a[aj :-uch that o@ = o, for some i. Consequently, one has
1(8) = La=123,?(8). It therefore suffices to show that 23, £:;" 2I,P(8)
fori = I .h, if the constant c is chosen conveniently. To do thb, let
a= aarx, E 23,, 0:,0 = nplx,PVp E nploc,iF!/.€. Then we find for the replete
ideal

a;.,,=a'Xx)91(0,.J-@ =TT p'@,

where v = Iip - ¥ Lairx, /qvq, that 91(0€p) = I, and thus Lpix {pv€ = 0.
The vector

(.
therefore lies in the trace-zero H ={(xp) E nplooJR | =0).
Inside it we have - see chap. I, - the complete unit Thus
tﬂere exists a lattice point A(u) = ( . = lpvp(u),  )pio-, u E o*, @uch
that

|fi,vé- Ipvp(u)j :S {pco
with a constant 10 depending only on the lattice A(0*). This implies

vp-vp(u) = v+ L {avg-vp(u)::: € log9l(arx.,)+Co =0 log91(a)+cy
n glex, n n
with ¢; = (o - h log91(0y. Putting now b = afu *J = TTpPnP, we get
b; = o;. This is because [ult= (u)= (I) and
oo = IP(vo - 1pw) 1S @ 10g91(a) + s

so that 91(p)!r:: em191(a)fv/n for Ploo; then b E -it,. so that a= b[u] E
m,P(8), where ¢ = emi_ M)
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Proof of (3.7): A€ O(t) = O(t) - 1, we may replace H°((cY by
H°( 4 = 1fno.-y u {0} = {f e 0j'11/Ip :S \I(i.,)*» for plcc).

We have to show that there arc constants C, C' €uch that

. 272y _k
$HO@ " - N@)| = CNG@)'~*
1k
for all 0. € I(0) satisfying 1)1(0.) 2: C'. For. EK=. the set 11°(n-1) is
mapped bijectively via. + . onto the set HO(laja-'). The numbers

#1°(a-Y) and \Ji(a) thu€ depend only on the da€:c.. mod P(O). As by the

preceding lemma J(0) = U;t. m, P(0), it suffices to @how(*) for . ranging
over the set 2I;

For this, we shall use the identification of Minkowski €pace
Ka= 11K,
ploc

with its canonical measure. Since ot = a, for n = np pl e Q(. we have
Hoa™y = {f ea’ | 1flp < Np)™ for ploc) |

We therefore have to count the lattice points in I = Ja-;'s; «i. which fall
into the domain

where Dp = {x & Kp | Ixlp :S \JI(p)*»}. Let F be a fundamental meh of I'.
We consider the €els

x @ ly Er I (F +y)npP,#0L
r @lyer | = ‘,‘C,,P,I
x Yelyer |F +yniP#olL
25 e e =FP ). anda@ ovvaos o .S oo

one has
# < #7H ") < #x]

a5 well as
#Y vol(F) :S vol(P, :S #X vol(F).

Thi:

mplies

#lin(a-1) - yol(P) < # - #Y= #X ™ Y).
| vol(F) -
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For the set Pr;,.= TTPq,.,_D,p, we now have

volP) @ TT 2up)", TT 2ri(p)", € 2'@ncd"lluel
p real

p cnmplc,
(ob@erve here that, under the identification Kp = one ha€ the equation
Ixlp = Ltf). For the fundameJllal mesh F, (3.3) yield@
vol(F) € /i3, 311 %).
From this we get
2 (2m)*
VidxT
Having obtained this inequality, it suffice€ lo show that there exist
constant5 C, C' such that
wx, N@uyerlE +ynir,M},c -

forall a E '21.; with 1Ji(a) 2: C'. We choose C' = | and lind the constant C
in the remainder of the proof. We parametriLe the set P, = TTpix, Dp via the
mapping

|ty ~ m(u)l <#X Y)|

@ 1" P,
where | = [O. I], which is given hy

J-mmee + Dp, ti-—+2ap(f- ;). ifp real.
J— D+p, (p,0) 1+ @(pcos2rr0,psin2rr0). ifp complex,
where ap = We bound the norm Iidip(x)Il of the derivative

d<.p(x) : IR" —+ (x E /") If dip(x) = (a,d, then 1l d<.p(.t)ll :Sn max la,iI.
Every partial derivative of ,;o is now hounded by lap, resp. 2rr€-  Since
aE 21;, we have thatap = I(p)v" .S ¢.TT(a) /p/n. for all ploo. It followp that

11 d,;0x)[1 :S 2rm maxa@¥fp S nldi(a)"*
The mean value theorem implie€ that
[0 — e = 9@ Ix = 311,
where Il 1l is the euclidean norm. The boundary of Pa,
Jp,eLJ[abux N bq,
P q'cp

j5 parametrized by a finite number of boundary cube€ 1! of /. We
1,ubdividc every edge of In-l into m = LI(a)'1' 2: C' = | @egments of
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111

equal length and obtain for /- a decomposition into m small cubes of

diameter_:::: (n - 1)112/m From(**), the image of such a small cube under r.p
has a diameter c;Ql(o)‘/n S (n- l)“zcl,y;\ﬂ,1 (n- 1) 12¢12 Cz2
The number of translates F+y, y EI' meetinga domain of diameter (

is bounded by a comtant c; which depends only on c, and the fundamental
me@h /<. The image of a small cube under thus meets at mo5t c.1
translates F +y. Since there are precisely =\J1(a)'1" T cubes
ro(l" —.. we see that tp (/.. meets at most daag..

translates, and since the boundary iJPa is covered by at most 2n such
parts cp(I"-1), we do indeed find that

#ly € Il (F+y)naPalo} :<co1(o)l-,

forall a E 2I, with NJt(a) ::_ 1, where C = 2nc3 is a constant which is
independent of a E 21,, as required. D

From the theorem we have just proved, we now obtain the strong version
of the Riemann-Roch theorem. We want to fonnulate it in the language of
divisors. Let D= I:P uply be a replete divisor of K,

H(D) & Ho(o(D)) € L T EK' | vp(h 2: -vpy-

£.(D) = f(o(D)) = Iog% and x(D) = x(o(D)).
We call the number

(D) @ £(D) - x(D)
theindex of specialty of D and get the

(3.9) Theorem (Riemann-Roch). For every replete divigor D E Div(()) we
have the formula

/(D) € dcg(D) +1(0) - g+ ;(1).
The index of @pccialty i (D) 5ati. ¢fies
i(D) = O(e-* deg(D3).
in particular, . (D) » 0 for deg(D) -» oo0.
Proof: The formula for f(D) follow€ from x(D) = deg(D) +f(o) - N
and x(D) = f(D) - i(D). Putting a-1 = tI(D), we find hy (3.7) that

#HO@:1) & 2ILaJ (14 &) 91(0)
2' (Y vT<l,;
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for @ome function ip(a) which remains bounded as 91(n) ----+ oo, o that
deg(D) = - log91(n- 1) = log91(a) -+ Taking logarithms and observing
that log(!+ O(t)) = O(t) and = exp(-%: deg D), we obtain
(D) @ f(a-") @ -log(@91(a-)) + 0(91(a) 'i")
= x(D) + O(e-t deg:).

Hence i(D) = £(D)- x(1J) = O(e-iUeg:D). O

To conclude this section, let us study the variation of the Eulcr-Minkowski
characteristic and of the genus when we change the field K. Let /, IK be a
finite extcm,ion and o, resp. O, the ring of integer5 of K, resp. L. In §2 we
considered Dedekind's complementary module

(LUK = jx EL | Tr(xO) 5; ol 0 Homy(0, o).

It is a fractional ideal in L whose inverse is the different ".DLIK. From (2.6),
it isdivisible only by the prime ideals of L which arc ramified over K.

(3.10) Definition, The fractional ideal
wk= c:KIQ € Homz:(0,2)
i called the canonical module of the number field K.

By (2.2) we have the

(3.11) Proposition. The canonical modules of L and K satisfy the relation
WL = ([LIKWK.
The canonical module wk is related to the Eulcr-Minkowski character-
istic x(0) and the genus:.: of Kin the following way, by formula (3.3):

vol(0) @
(3.12) Proposition. deguJK = -2x(0) =2!; - 2E(0).

Proof: By (2.9) we know that is the di5criminant ideal
OKIQ = (dK), and therefore by (1.6),
91(wK) = 91(:DK, ¢)-1 = 91(0KI-Q,)-* = IdK 1-,
so that, as vol(0) —<@».vve have indeed
dego)kK = - log91(wK) = log IdK | = 21logvol(0) = -2x(v) = 21;-2f(tl).
8]
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As for the genus, we now obtain the following analogue of the Riemann-
Hurwitz formula of function theory.

(3.13) Proposition. Let LIK be a finite extenlion and eL, resp. Rk, the
genus of L, resp. K. Then one has
1
. — o) =L K(gx — £@x)) + 5 degCrix -
In particular, in the c.:ise ofan unramified cxtcn. @ion LIK:

x(od = [L: K]x(o,l;"}.

Proof: Since wL = ([LIKWK, one has
Niwr) = Ny xwx) MEL k) = Maog) K N(CLK).

so that
degwl = [L: K]dcgwK +dege’LIK.

on follows from (3.12). D

Thus the propo<;

The Ricmann-HurwitL fonnula tells us in particular that, in the decil,ion
we took in € 1, we really had no choice but to consider the extension Cl lle
as unramijied. In fact, in function theory the module corresponding by
analogy to the ideal e:Lik takes account of precisely the branch pointl, of
the covering of Riemann sult'aces in question. In order to obtain the same
phenomenon in number theory we are forced to declare all the infinite
primes of L unramified, since they do not occur in the ideal e:LIk.

Thus the fact that CIR is unramified appears to be forced by nature ihclf.
Investigating the matter a little more closely, however, this turns out not to
be the case. It is rather a conl,cquence of a well-hidden initial choice that we
made. In fact. in chap. I, §5. we equipped the Minkowski space

m,,:[]:[c]*

with the “canonical metric"
(o y) =D xe¥e-

Replacing it, for in1,tance, by the "Minkowski metric"

(e )= axeye]
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aT = | ifr =T, er = % if r # T, change5 the whole picture. The Haar
measures on K:1 belonging to {,) and () are related as follows:

vot.monical(X) = 2" vol,1mkov, €.(X).
Distinguishing the invariant€ of Riemann-Roch theory with respect to the
Minkow,;ki measure by a tilde, we get the relations
Y(a) = x(a) + log2'. I(a) =t(a) + log2'
(the latter in caSc that H"\a) #- 0), whereas the genm, remains unchanged.
Substituting this into the Riemann-Hurwitz fonnula (3.13) preserves it& €hape
only if one enriches I'LIK into a replete ideal in which all infinite prime€ ,P
such that L<p #- K[| occur. This forces us to con&ider the extension CIIP: a€p
ramified, to put ("PIP= [L-+J: K11], f@IP = I, and in particular
Ip=[kp:IR),  ft,=1
The following modilkations ensue from this. For an infinite prime pone has
lo define
Vp(a)=-£'11logirnl, p"=e@le". Wi(p)=e.
The absolute norm as well m, the degree of a replete ideal a remain unaltered:
Ul@a) =91(a), ifug(a) =- logll(a) = deg(a).
The canonical module WK however has to be changed:

WK =WK n p21og2.
peomplex

in order for the equation
degWK= -2X(0) = 2g - 2i(0)

lohold. By the same token. the ideal ([LIK has to be replaced by the replete
ideal
Tk =€k [ P

&o that
WL =i[LIK it, K(ijjK).
In the same way as in (3.13), this yicl<lIs the Riemann-Hurwitz formula

RL- f(o,) = [L: K](RK -f(oK)) +| degitl,K.

In view of this semitivity to the chosen metric on Minkowski space Kiis,
the mathematician Uw1 JA\VSEN propose€p as analogues of the function fields
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not just number fields K by themselves but number fields equipped witha metric
of the type
YK T 2N e,

a, >0,a= ar, on Kn<- Let these new objects be called metrized number
fields. This idea docs indeed do justice to the :;.ituation in question in a very
precise manner, and it is of fundamental importance for aljfehraic number theory.
We denote metrized number fields (K, (, )K) as K and attach to themthe
following invariants. Let

Yyl =D arXcVe.
Let p = Pr be the infinite prime corresponding to r : K -+ C. We then put
ap = a,. At the same time, we also use the letter p for the positive real

number
y=¢" e RY,

which we interpret a€p the replete ideal (I) x (L =--,\.e"". 1.---,\) E
2(CY) x JR*t-- We put
Pl=
= oy and  fp = aplKy 1K)
and we define the valuation vp of K* associated top by
pla) = —eploglral.
Further, we put
JI0)J) =efp and lalp = 131()J)-"pca.
so that again lalp = Iral if pis real. and 'alp= Irnl® if )J is complex. For
every replete ideal n of K, there i€ a unique repre5entation a= N5, which
gives the absolute norm lI(a) = m():l)or‘ and the degree P
P
degR(a) = - log Ni(a).
The (anonical module of K is defined to be the replete ideal

WR=WK-Wcx.E.1(8)=3(0)X nR©,
uloc

where wk isthe inver5e of the difforent .DKIU or KIQI, and
W-0 = (ex;)ploo E n IR@.

Jioc





€3. Riemann-Roch 223

The Riemann-Roch theory may be transferred without any problem,
using the definitions given above, to metrized number fieldi,, K= (K, (, )K),
Distinguishing their invariants by the suffix f yields the relations

VoIR(X) = Q Ja; wvol(x),

because Ta: (K1r.:, (,_ YK+ (K3, (), (k1) 1+ CIU==xe), is an isometry
with determinant T1-r .JCI;, and therefore

XR(oK) = - logvolR(oK) = x(oK) - logl) jai,
#119(0K)
16g-~ = t(ox) —log| | e
VoIK(W)
The genus
#1,(KIVI"dK]

f.R = fR_(OK) - XK(0K) = €(OK) - x(CIK) = 1| O O3 <S>

does not depend on the choice of metric.

Just as in function theory, there is then no longer one smallest
is replaced by the continuous family of metrized fields (Q, axy), a E
all of which have genus r: = 0. One even has the

(3.14) Proposition. The metrized fields (Q, axy) are the only metrized
number fields of genus 0.

Proof: We have
- - loe #i 1'dK] -0 - #u(K)/jd;; T € 2' (2rr)'
g ms -
Since rr is transcendental, one has s = 0. i.e, K is totally real. Thus
#p.(K) = 2sothat IdKI = 4" ' where n = r = LK: IQ]. In view of the
bound (2.14) on the di€criminant

1dKII/2 € S(¥ar/2_

this can only happen if n .:S 6, But for this case one has sharper bounds, due
to om.y?ko (sec 11111, table 2):

ldki/n € 3.00 421 530 638

This is not compatible with Kh 1/n = 4y, so we may conclude thatn _:s 2
But there is no real quadratic field with dil-criminant IdK | = 4 (see chap. I,
*2, exercise 4). Hence 11 = |, so that K = Q. o





224 Chapter 1Il. Riemann-Ro<.:h Theory

An extension of metri:ed numher fields is a pair | = (K. (,)K)
L = (L, ()!).such that K €Land the metric5

0 =3 foXaYo
Satisfy the relation ur 2: /Ja whenever r = alK- If,.PIP arc infinite primes

of LIK, ,.P belonging to a and p to r = alK, we define the ramification
index and inertia degree by

e-Jlip=ctr/Ja and fq31lp=/Ja/a,[L,v:Kpl-
Thus the fundamental identity
I: ecoi, fvip @ [L, KI
PIP
is preserved. Also ,.P i5 unramilicd if and only if ar = @a. For "replete prime
ideals" p = ear, .P = efi", we put
i11dP)=TT'1J"™PIP, NL1d'1J)=phiv.
PIP
Finally we define the different of LIK to be the replete ideal
Dr,R="LhIK ".Dc,oEI(BL)=I(cL)x T| IR@.
where ".DL K is the different of LIK and
Q@ (fPlae)-al@ E TT
Pl§

where /3rp = f3a and ap =ar (,.P belongstoa and p to r = a I K). With this
convention. we obtain the general Riemann-Hurwitz formula

gr,- f1:(0L) = [L: KI(g-K - fK(0K)) - € deg'D[ik -
If we comider only number fields endowed with the Minkowski metric,
then L-J.I #- KP is always ramified. In this way the convention found in

many textbooks i€y no longer incompatible with the custom€ introduced in the
present book.

§ 4. Metrized CJ-Modules

The Riemann-Roch theory which wa5 presented in the preceding section
in the case of replete ideals is embedded in a much more far-reaching
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theory which treats finitely generated o-modules. It is only in this setting that
the theory display" its true nature. and becomes susceptible to the most
comprehensive generali7.ation. This theory i€ subject to a formafo,m which
has been constructed by ALL'xas\.nth cHoTiEnneck  for higher dimensional
algebraic varieties, and which we will no\\- develop for number fields. In
doing so, our principal attention will he focu<;ed a€ before on the kind of
compactificalion which i<; accompli€hed by taking into account the infinite
places. The effect is that a leading r6le is claimed by linear algebra - frn
which we refer to [15]. Our treatment is based on a cour€e on "Arakclov
Theory and Grothcndieck-Riemann-Roch” taught hy Gu,vTen Tulrwl,. There,
however, proofs were not given directly, a€ we will do here. but usually
deduced as €pecial case€p from the general abstract theory.

Let K be an algebraic number field and ¢ the ring of integers of K. For
the pa%age from K to IE. and we start by considering the ring
[0) Ky =K ®gC.

It admit€p the following two further interpretations, between which we will
freely go back and forth in the sequel without further explanation. The set

X(C) = Hom(K,C)
induces a canonical decomposition of rings
@] K ;i ffic. oozi

aEX(C)
Alternatively, the right-hand side may be viewed as the "ct
Hom(X (C), C) of all function€ x : X (C)--+ i.e.,
® Kg = Hom(X(©).C)|
The field K isembedded in K,c via
K-+ K®&qC, oi-+a@ 1,

and we identify it with its image. In the interpretation (2), the image of a EK
appear€p as the tuple E&a aa of conjugate€p of o, and in the interpretation (3)
as the function x(a) = aa.

We denote the generator of the Galois group G(CIIR) by Fe:.,, or €imply
by F. This underline,;, the fact that it has a po€ition analogoU', to the Froheniw,
automorphism Fp E G(i!i\IF,), in accordance with our dcci€ion of§ I to
view the extension CIIR a€ unramified. F induces an involution F on Kc
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which, in the repre@cntation K.€ = Hom(X (C).C) for x : X (C) -+ :C, is
given by
(Fx)(@) = x(ir).

F is an automorphism of the IR-algebra Kc. It is called the Frobenius
correspondence. Sometimes we also consider, besides F, the involution
Z i+ Zon Kc which is given by

We call it the conjugation. Finally, we call an element x E Kui. that is, a
function x : X (C) -+ :C, positive (written x > 0) if it takc5 real value€y, and
if x@ > Ofor all a E X (C).

By convention every o-module comidered in the <;equel will be mpposed
to be finitely ienerated. For every such o-module M, we put

Mc =M®z:C.

This is a module over the ring Kr; = o ®z: C, and viewing o as a subring of
K,c - as we agreed above - we may also write

Mc = M & Ke

a; M ®z IC =M ®o (0 ®c:: :C). The involution xi-—+ F \' on Kc induces the
involution

F(a®x)=a®Fx
on M:;. In the representation M.:_, =M ®z  one clearly ha>
F(a ®) =a® Z.
(4.1) Definition. A hermitian metric on the Kc-module Mc is a sesqui-

[illear mapping
(. ha s Mo x Mg — Ko,

i.e., 1K:..; -lillear form (x.y)m in the first variable satisfying
X, V)M = (y.x)1,1,
such that one has (x xM > 0 for.\ f. 0.
The metric (. )M is called P-invariant if we have furthermore

F(G1.y)M = (Fx.Fy)M.
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This notion may be immediately reduced to the usual notion of a hennitian
metric if we view the Kj--module M1_-, by means of the decomposition
Kc = mnIC, as adirectsum

Mc € MOo kc € EB Ma

JEX(.C

of IC-vector spaces
M,r =M®on IC.
The hermitian metric (. )m then splits into the direct sum
xX.ydm = @D o, Yolm,
oeX(T)
of hermitian scalar products (, }wm, on the C-vector spaces M. In thi
interpretation, the F -invariance of {x, y)u amounts to the commutativity o
the diagrams

)
[
M; x My ——»

e

Ma x Ma@ IC.
\

ur.,

(4.2) Definition. A metrizcd o-module is a finitely generated o-module M
with an F -invariant hermitian metric on Mee.

Example 1: Every fractional ideal a£;.: K of o, in particular o it&elf, may
be equipped with the trivial metric
(Ly)=x_f= EB trir
8ECX(:C)
on a®:,; IC = K exal'€ = Kic- All the F-invariant hermitian metric€ on a arc
obtained a€

a(x,y) = axy =Duorx¥,.
where a E K'2 varies over the functions a  X(IC) --- IR: €uch that
a(u) = a(a).

Example 2: Let LIK be a finite extension and Q1. a fractional ideal of L,
which we view as an a-module M. If Y(IC) = Hom(L,C), we have the
restriction map Y(C)--.- X(IC), r w4« rIK, and we write rla if a= TiK-
For the complexification M1_- = Q1. ®:,: IC =Lr.we obtain the decomposition

vMce EB c e Ma ,

reY(1-
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where M(f = EB,irr C. M is turned inlO a metrized a-module by fixing the
standard metrics

xY)Me =
on the (L: Kl-dimensional (>vector spaces Ma.

If M and M" are metrized ()-modules, then so is their direct sum M ffi M',
the tensor product M ® M* the dual M = 11om@€(M, 0) and the n -th exterior
power j\"M. Infact, we have that

(M ffi M')c = M™:: EB Mf;, (M 0() M"),@ = Mr: @ki- Mi-,
MC =HomK,(Mu..:,Kc), (AnM)c =/1/K,;:M,c,
and the metric€y on these Kc-modules are given by

(\ E&xys y)MeM' = (AY)M + (X, y)w,, resp.
(X@X.y@y')MoW = (x,y)M  (X.y),w,. resp.
(AW = oM, resp.

x1 A Ax1131 N avipnvam =det((t, yi)1vl).

Here .t, in the case of the module Mrr:, denotes the homomorphi@m
A= (XOM: M-+ K.@.

Among all a-modulez;. M the projective ones play a :,pccial réle. They
are defined by Ihc condition that for every exact -;cquence of o-modules
F' -+ F -+ F"the sequence

Hom@,.,(M, " - + Horg (M, F)
is also exact. Thi5 is equivalent to any of the following condition:,, (the last
two. became O is a Dedekind domain). For the proof, we refer the reader to

Standard textbook:,, of commutative algebra (see for in:,,tancc [90], chap. IV,
S3, or [161, chap. 7. *4).

Hom, (M, F")

(4.3) Proposition. For any hnitely generated o-module M the following
conditions are equivalent:

(i) M i€ projective,
(i) M is a direct summand of a hnitely generated free o-module,

(iii) M i:. locally free. i.e., M ®, Op i, a free Op-module for any prime
ideal p,

(iv) Mis torsion free, i.e., the map M---+ M, .\ r+ ax, is injective for al/
nonzero a E o,

(v) M € aEB 0" forsome ideal a of o and some integer 11 :: 0.
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In order to distinguish them from projective o-modules, we will henceforth
call arbitrary finitely generated o-modu]e!’, coherent. The rnnk of a coherent o-
module M is defined to be the dimension

k(M) = dimK(M i&1c, K).
The projective o-modules L of rank | are called invertible o-modules,
because for them LOo +0, a0 (/ ;. (@), b an isomorphism. The
invertible a-modules arc either fractional ideals of K, or isomorphic to a
fractional ideal a> o-module’>. Indeed, if L is projective of rank | anda E L,
a f-0, then, by (4.3), (iv), mapping
L--—-+L0.K=K(a01),  Ji- +/'(x)(a01),

gives an injective o-modulc homomorphism L » K, x . f(x), onto a
fractional ideal a <:; K.

To sec the connection with the Riemann-Roch theory of the last €ection,

which we arc about to generalize, we observe that every replete ideal
o=TT p N pp =ou
Pt Plo
of K defines an invertible, metrized o-module. In fact. the identity
0-x, = nPIrx p"P yields the function
a: X(IC)----+ IR+, a(a) = e,
where Po- denote5 as before the infinite place defined by a : K -+ C. Since
Pa= @a, one has a(CT) = a(a), and we obtain on the complexification
mc = or0:-: C = Kr.
the F-invariant hermitian metric
{A.Y)n=axs'= EB 2/ xo-v
MEX(L)

(see example 1, p.227). We denote the metrized o-module thus obtained
by L(n).

The ordinary fractional ideals, i.e., the replete ideals a '>UCh that
a= = 1, and in particular o it@elf, are thus equipped with the trivial
metric {x, y)" =(X,y) =r1).

(4.4) Definition. Two metri7ed o-modules M and M' are called isometric
if there exisls an isomorphism

of o-modules which induce8 an isometry  : Mc » M@,
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(4.5) Proposition.

(i) Two replete ideah a and b define isometric metrized a-module;; L(a)
and L(b) if and only if they differ by a replete principal ideal [al: a = bla].
(i) Every inverlib/e metrizcd o-module is isometric to an o-module L(a).
(i) L(ab) L(a) ®o I.(b), L(a-}) =I(@).

Proof: (i) Let a =[], ", b =[], p*r, [a) = I, P and let

@(a) =¥, Blo) = e p(o) = P,

If a= bla], then J/jp = /p + Vp(a); thus a= {3y, and ut = br(a). The
a-module isomorphism b;---+ar. X r+ a.t, takes the form (. )b to the form
(, )a, Indeed. viewing a as embedded in Kc, we find a= EB" eraand

aii = De @ =y |
because I'p,,(a) = - log iaal, ;;,0 that
(ax .ay)a = a(ax,ay) = ay-l(x Y)=f{x,y) = (,-, Y)o.

Therefore bi——+ur, x 1 ax, gives an isometry L(a) i L(b).
Converciely, let «; : L(b) —+ L(a) be an isometry. Then the a-module
homomorphism
3t br——+ a1
b given as multiplication by some element a « bt 'u, o Hom (b u) The
identity
Bl v) = (x, 3 = (g0, g0)a = a(ax.ay) = ay " (x. 3]
then implie& that a= fly, so that vp = t-Lp + isp(a) for all ploo. In view
of u1 = br(a), this yields u = blaJ.
(ii) Let L be an invertible metrized o-module. A€ mentioned before, we have
an isomorphi5tn
g:il-;. up
for the underlying o-module onto a fractional ideal ur. The isomorphism
L1:;, -+ uic = Kr: gives us the F-invariant hermitian metric
= (g(:lct),g,cl(y))L on K,c.11 i€y of the form

h(x,y) = crx.vV

for some function a: X(C)---+ JR€ &uch that a(0) = a(a). Putting now
a(@) = e?vp... With vp, E IR, makes ur with the metric h into the metrized





fi4. Metriled 0-Modules 231

a-module L(a) ar,sociated to the replete ideal a= nt TTP g and Lis
bometric to L(a).

iii) Let a= nplwvp, b = TTptil'e, a(a) = e f3(a) = e The
isomorphism

al®bl----+albl, a@hf-------- wah,

between the o-modules underlying L(a) @, L(b) and L(ab) then yields, as
(ah,a'h)ah = afjaha’h’ = a{a,a)fi{h,h, = {a,a’)a(h,h’)D, an isometry
L(a) ®o L(b) ™ L(ob).

The a-module Homg(a,. 0) underlying Lea) is isomorphic. via the
isomorphir,m

g:a;l--—-+Homg(al,0), af--mmeeoo-- (0(8):xL---c>-al).
to the fractional ideal af?. For the induced Kr:-isomorphir,m
g.¢: K,c-——-+ HomKiy,(Kc, Kd

we have
geM =xy=a 'exy =a” (¥ Dr@-

so that ;¢ (x) = a-*.f.and thur,
(:C0), 9.c)) ital = a-2(f. y)ial = 02 (Xl
=alxf = (x vL@ 11

L(a-y u]

Thus g gives an ir,ometry Lea)

(4.6) Definition. A short exact sequence
0-+M@ M@ M-—+0

of metrized o-modules ir, by dclinition a short exact €equence of the
underlying v-modules which .<.plits isometrically, i.e., in the sequence

0t MO O MOO MO--+0

M. ir, mapped ir,omclrically onto and the orthogonal complement
(acM@)* is mapped isometrically onto

The homomorphisms a. fJ ina short exact sequence of metriLed o-module5
are called an admissible monomorphism, resp. epimorphism.

To each projective metrized a-module M ir, associated its determinant
det M, an invertible metriLed a-module. The detcmlinant is the highest
exterior power of M, i.e.,

detM = 'M,  n=rk(M).
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(4.7) Proposition. f O > M € M@ M' > 0 is 2 .@horl exact
sequence of projective metrizcd a-modules, we have a ¢,monical isometry

dctM'® detM™;::: detM.

Proof: Let n' = rk(M’) and n” = rk(M"). We obtain an isomorphi€@m
K : det M' ®, dctM" € det M

of projective 0-module5 of rank 1 by mapping
(MYA . AML)® M AM@..) i am i .. Aamit An7iA . AN

where iii'i'- ,in@,, are preimages of m'(, under fl: M > M".
This mapping does not depend on the choice of prcimag:es, for if, say,
1ri\' +ame.. ;. where m;1.., EM', b another preimagc of m'i'- then

am'; I\ .. Nam@A®n'( +am;y,+1) Adii;n. Amy,,
=con; n .. name. nin\' n . N m

@ince am'; I\ .. name, N am;.,; = 0. We show that the o-module iso-
morphi€m k is an i€ometry. According to the rules of multilinear algebra it
induce€y an isomorphi€m

i det ML ®k, det M{, —> detMc
of Kc modules. Let X.yj E M,(, i I,....n' and x,y; € aM'E
j=1,. ..n" and furthennore
xX'=Ner;, V=Nys; o x=Nxe y=NY;-
Then we have
(K(t' ®f/x).1<(y' ® ,By)),kIM = (ax' I\ .\ay' i y)delM
©del(1x;,y;)w [ 0_)
€ (B, favdivt"
= det( (xj,.rk)M,) det((.Bx.1, f3yr)M")
= (x\y)delM'({Jr,{Jy),1e1M"
={x' @f3x,y'@ fly),kIM'8,kt 1"

Thus 1<. is an isometry. C
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Exercise 1. It M, N. L are metriLed o-modules, then one has canonical i€ometrie€
MO0 N & NOo M, (M®; N)O, L € MO,,(NO,,1.),
M®o (NEBL) € (MOo N)EB (MO0 L).
Exercise 2. For any two projective metrized c1-module€ M. N, one has

/”\(MEBN) =

Exercise .| For any two projective mctnzed n-module€ M, N, one ha€
det(M op N) @ (detMI"-"1xi0 (dctN):HK(HI
Exercise 4. If M i€ a proJective metri7ed cl-module of rank n, and p 2. 0, then there
i€a canorncal isometry
det( A M) = (det )P

§5. Grothendieck Groups

We will now manufacture two abelian groups from the collection of
all metrized o-modules, rc<,p. the collection of all projective metri7cd 0-
modules. We denote by /M} the i<somctry clas€ of a metrized o-module M
and fonn the free abelian group

Fo(0) = EB z{m}, resp. F°(0) = EB z{m),
M IMI
on the i€pometry classes of projective, rc"P- coherent, metrized o-modules. In
this group, we consider the subgroup

Ro(0) S; Fo(i5), resp. R%8) S; F°(0),

generated by all cicmenh [M') - {M} +{M"} which arise from a -;hurl exact
sequence

+0

of projective, resp. coherent, metrized o-modulcs.

(5.1) Definition. The quotient groups
Ko(0) = Fn(O)/Rn(0). re."P- K%o) = F(i5)/R%(8)

arc called the replete (or compactified) Grothendieck groups of o. 1f M
i" a mclriLcd CJ-module, then fMI denotes the elms ii defines in Ky(0),

resp. K°(0).
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The construction of the Grolhcndieck groups is such that a short exact
sequence
O e — +0

of metrized o-module,; becomc5 an additive decomposition in the group:
[MI€ IM'l + IM"I.
In particular, one has
[M'EBM"] @ [M]+[M"J.
The tensor product even induces a ring structure on Kq(8). and K°(E5) then
becomes a Ko(8)-module: extending Ihe product
[M)[M") : € {M 0, M)
by linearity. and observing that N ® M ;;; M ® N and (M ® N) ® L
M ®(N ®L), we find right away that F°(8) isa commulativc ring and

isa subring. Furthennore the @ubgroups Ro(Ci) c;;;: Fo(8) and R°(0) c;;
turn out to be Fo(8)-5ubmodule€p. For if

is a short exact sequence of coherent mclrizcd CJ-modules, and N is a
projective mctril:cd o-module, then it is clear that

0wt N® M’ wrrvectk N®M et N @ M' —ooert 0

is a short exact sequence of mctril:cd o-modules as well, so that. along with
agenerator {M%) - {MI+ {M11}, the element

{NI{M") - {M) +{M"J) € {N OM")-{N OM)+ {NOM")
will also belong to Ry(0), resp. R%(8). This i5 why Ko(i5) = F(8)/Ro(8)
isaring and K°(0) = F°(i:5)/ R°(0) is a Ko(8)-module.

Associating to the class [M] of a projective CJ-module Min Ko(8) its
clal,,,; in K°(0) (which again is denoted by [MJ), dctincs a homomorphism
Ko(i.5) -+ K(i5).

It is called the Poincare homomorphism. We will show next that the

Poincare homomorphi€m is an iwmorphism. The proof is based on the
following two lemmas.

(5.2) Lemma. All rnherent metrized o-modulcs M ildmit a "merrized
projective rc,;o/ulion", i.e., ;1 shmt exact 8equence

of metrized CJ-modules in which f' and F arc projective.
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Proof: If a;, ,a" is a system of generators of M, and F is the free
o-module F = 0" then

[ S + M, (X1 -...X%,,

+ Lx,al,

1=1
is a surjective o-module homomorphism. Its kernel E is torsion free. and
hence a projective o-module by (4.3). In the exact sequence

0-----+ Ee -+ F:: @ Mc -—--+0.

we choose a section€- : M": -+ Fe of J, so that F": = E{: EBsM1_.. We obtain
a metric on F.c by transferring the metric of Mc to sM.c, and by choosing
any metric on Ee. This makes O -+ R -+ F -+ M -+ 0 into a short exact
sequence of metrized a-modules in which E and F are projective. (W)

In a diagram of metrized projective resolutions of M

the reyolution in the top line will be called dominant if the vertical arrow€
are admissible epimorphisms.
(5.3) Lemma. Let

T Y S Sy ) R —)

be rwo metrized projective reso/uliom of the metri7ed o-module M. Then,
laking the o-module

FéF wm F' @ \6cx) EF xF' I [(x] @F(x)

and the mapping f F-+ M, (X', x") -+ f'(x} = j '(x"), one oblains a
third melriLed projective re.rnlution

with kernel E = £' x £" which domimlle. € both given one@.
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Proof: Since F' EB F" i@ projective, ;o is F, being the kernel of the

homomorphism F' EB t * o M. Thus £ is also projective, being the
kernel of F __. M. We com,ider the commutative diagram
Foete e —

T
-+ Fu, Lzl Mc -—-+0

0---+ E'. F{ ([l&_ Mc -—-+0.

where the vertical arrows are induced by the surjective projection€
F¢ F. Fe F
The canonical i,;ometrie5
s Mo — sMo. 8" Mo — s"Mc

give a @ection

51 Mg — Fr, sxo=(s'x.5"x).
of F which transfers the metric on to a metric on sMc. ric = x ;|
carries the -.um of the metric, of "€, so that F,c = E.:;, EB also

receives a metric, and

(I---+E---+F---+M---+0

becomes a metri,cd projective resolution of M. It is trivial that the projections
F _,. F andr; > /. are admi@sible epimorphisms. and it remains to show
this for the projections rr' : F - F', . F » F" But we dearly have lhe
exact sequence of o-modulcs

0+ E".li, F=F xu F'@  Feet 0,

where ix" = (0, r"). As the restriction of the metric of F to £ = x £
is the sum of the metrics on E' and £" we €ee thati : £ > i£. i€@an
isometry. The orthogonal complement of i E; in F,c i€ the :-pacc '

F{ xM, s"M:: = /(x',s"a) E F,;, x./'Mu:l f(.x)=a}
Indeed, on the one hand it is clearly mapped bijectively onto F,

other hand it is orthogonal to i £€".. For if we write X' = s' a+e".
then

and on the






(.ristta) = sa + (€',0).
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where (e',0)E Ee and we find lhat. for all E f@',
(d',(x7'a))F ¢ ((0.x"),.rm)F +((0,x"), (e ,0J)£4 0.

Finally, the projection F X, "M — Fq isan isometry, for if (.t's"a),
(y',s"h) EFl- xm, "My andx’' =s'a+e') y' = s'h+d', with (*,d' E £€.
then we get

(x ,s"a) =sat (e.0). (v ,s"h) =sh+(d',0)

and

((x,s"a),(y, I'h))F & (w,.,h)F F(w, (d',0dF +((e',0).,.h)F
+ ((€,0), (d, 0)E
= (@h)yLf + (¢\d)E' = (l'ash)l + (e\d)E'

=(s'a+e', @'h+d)F-=(x.y)F" O

(5.4) Theorem. The Poincar6 homomorphism

Ko(0)--+ K°(iS)
is an isomorphism.

Prnof: We define a mapping
m: FO(8)--+ Ko(O)
by choosing, for every coherent metri7ed CJ-module M, a metrized projective
re<;o]ution
O--+E--+F--+M--+0
and af,<;Ociating to the class /M) in F°(8) !he difference [FI - fEJ of the

classes LF land [E j in Ko(0). To sec that this mapping is well-defined let us
fin,I consider a commutative diagram

of two metriLcd projective resolution<, of M, with the top one dominating the
bottom one. Then E----+ F induces an iwmetry ker(a) :_,. ker(fi). €0 that we
F|—[El1=|F'] + [ker(8)] — [E'] — |ker(a)] F'l—1ET.






have the following identity in Ko(8):
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IfnowO> E > F > M»> 0,and0O-> r".0 F" > M » 0 aretwo

arbitrary metril:ed projective resolutions of M, then by (5.3) we find a third

one,0» f;»> F > M > 0, dominating both, such that
IF1—[EN=F1—E1=1F"I = 1E"Il

This shows that the map n : FO(0) » K,(0) i€ well-defined. We now show

that it factorizes via K°(8) = F°(0)/R°(0).LetO » M' » M@M" -0
be a short exact sequence of metri7ed coherent o-module€y. By (5.2), we can
pick a metrized @rojective resolution 0> E > F€ M - 0. Then dealy

0> E"> F€@M" > O0isashort exact sequence of metrized o-modules
a@ well, where we write f* = a of and E" = ker( f*). We thus get the
commutative diagram

O->E-FeM--O

b, b

o--» B Lo

and the snake lemma gives the exact €equence of a-modules
0-» E-> J"@ M - o

It is actually a short exact !",equence of metrized o-modules, for Ef is mapped

isometrically hy f onto M, so that € Ef is mapped isometrically by f
onto M, €. We therefore obtain in the identity

n/M’) -n/M) +n/M") @ [E"] -[E] - ([F]- [ED+ [F}-[£"[ €0.
Itshows that rr : F°(0) » Ko(8) does indeed faclorize via a homomorphism
KO(8)-Ko(fi).

Itis the inverse of the Poincare homomorphism because the composed maps
Ko(0)--,. KO°0)-» K0 and KO(8) - Ko(8)--. K°(0)

are the identity homomorphisms. Indeed, if 0> E > F > Mo 0is
a projective resolution of M, and M is projective. resp. coherent, then in
Ko(i5), resp. K°(0), onehas the identity [MI= 1F)-[£]. o

The preceding theorem shows that the Grothendieck group Ky(0) does not
ju@t accommodate all projective metrin:d o-modulcs, but in fact all coherent
metrized o-modules. This fact has fundamental significance. For when
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dealing with projeclive modules, one is led very quickly to non-projective
modules, for instance, to the residue class rings o/a. The corresponding
classes in KO(i5), however, can act out their important r6let> only inside the
ring Ko(8), because only this ring can be immediately subjected to a more
advanced theory.

The following relationship holds bclween the Grothendieck ring Ko(E5)
and the replete Picard group Pic(i5), which was intrcx:luced in §1.

(5.5) Proposition. Associating to a replete ideal a of K the metrized o-
module L(a) yields a homomorphism

Pic(8)-+ Ko(8)*, [a] + IL(0)]

into the unit group of the ring Ko(8).

Proof: The correspondence [a] i+ [L(a)J is independent of the choice of
a replete ideal a inside the class [al E Pic(i5). Indeed, if b is another
representative, then we have a= b[a], for some replete principal ideal la),
and the metrized tJ-modules L(a) and L(b) are isometric by (4.5), (i), sothat
fL(a)] = [L(b)]. The correspondence is a multiplicative homomorphi@m as

[L(nb)I € [L(n)O, L(b)l € JL(N][L(b)J. (]

In the sequel. we simply denote the class of a metrized invertible t-
module L(a) in Ko(8) by [aj. In particular, to the replete ideal tJ = TIPp®
correspond€ the class 1 = [o] of the a-module o equipped with the Irivial
metric.

(5.6) Proposition.  Ko(i5) is generated m, m:1 additive group by the ele-
ment. @ la].

Proof: Let M be a projective metrized tJ-module. By (4.3), the underlying
a-module admits a€y quotient a fractional ideal a1, i.e., we have an exact

©equence

0+ N-+ M-+ a-+ 0
of 0-module€y. This hecomes an exact sequence of metrized o-modulcl, once we
restrict the metric from M to N and choose on a; the metric which is tram,fcrred
via the isomorphism Ni: :::: or:- Thus a; becomes the metri?ed o-modulc
L(a) corre<,ponding to the replete ideal a of K, €o that we get the
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identity [MI= IN]+ lo] in K(8). Induction on the rank shows that for
every projeclive mctrized o-module M, there b a deeompo@ition

MI=Ta, |+ -+ 10,4 [m}
The elemenli,, lo] in Ko() satisfy the following remarkable relation.

(5.7) Proposition. For wly two replete ideals a and b of K we have in
Ko(8) the equation

(lal - 1y(Ibl - 1)@ 0.

Proof (TAMMI: ): For every function a : X (IC) -+ let ui,, consider on the
Kc-module Kc=  ffioEX(t:J the form

axy = ffia(a)xo5'o.

For every matrix A = (€ ) of :uch functions, we con:,ider on the
K:::-module Kc_- EB Kr: the form
(xEByx EBy)A =a,X' +yx_v' + OyX' + fiyy'

a,Y, re5p. {,)a isan F-invariant metric on Ke,, resp. on K:- EB Kc, if
and only if a is F-invariant (i.e., a(@) = a(a")) and a(a) e rc.,p. if all
the functions a, /3, y, 8 arc F-invariant, a(a), /3(a) € JR: and =y, and if
moreover <letA = afi - yy > 0. We now assume this in what follows.

Leta and b be fractional ideals of K. We have to prove the formula
lal + Ibl @ labl +1.

We may assume that a, and b, are inteiral ideab to one
another, because if nccc%ary we may pass to replete a' = alal,
b' = b[hj with corresponding ideals O; = aa, b; = bih without changing the
cla%es lo], [b], [abl in Ky(0). We denote the CJ-module @;- when mctrized
by ax_v, by (al.a), and the o-module 111 EB b;- metril:ied by ( , ) for

A=(; €©),by(orEBb1,A).GivenanytwomatricesA= (; ;) and
T
A=

Y 93 vewnt

A~ A,
if [(0, EB bi), A]= [(a, EB bt), A7 in K,(8). We no\¥. consider the canonical
exact sequence

O-r-eeet Ot Ot EB D1 wvemert bfeveeet 0,
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Once we equip orEBbf with the metric (, )A which isgivenhy A = (; 0),
we obtain the following exact sequence of metrized a-modules:
) 00— @no) — (ar®br.A) — (bf— L) —0
o
Indeed, in the exact sequence
0--;,- Kc--;,- Kr.EB Kc--;,- Kre--;,- 0,

the restriction of ( , )A to Kr_ EB [OJ yields the metric axJ on Kg;
and the orthogonal complement V of Kc EB{O} consists of all elements
a+ hEKI1 EBKre such that

(t EBO0,aEBh) =axii+yxh =0,
forall x EK_:_-, €0 that
V @ { (-j7/a)bEBhl 1, E Kc}
The i€@omorphism V € K, (-Y /a)hEBh s+ h. transfers the metric (, )A
on V into the metric 8xy. where 8 is determined by the rule

8@t '(I),rr- (1) A@ (- 7/2)IEN!, (- 7/2) IEDDA

—a@ -y=-Y@ +/3=/3-Yf-

This shows that(*) is a short exact sequence of metrized o-modulcs, Le.,

()05 5]

Replacing fJ by f3+ 2! =y we gel

&)= 5)

\7 OB+ 0 B
Applying the same procedure to the exact sequence O -+ br -+ 0;EB by_...+
ot—+ 0 and the metric (€ ;, ) on or EB b1, we obtain

(a +Y j Q,) (@ )

o fi

Choosing _
ad

3 =g+ p aé————
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makes the matrices on the left equal, and yields

o 0

0 B
o, ifwe puts = /3 + 11,

G -1 )

which is valid for any F-invariant function 8 : X (C) - Il f>Uch that 8 ::_ fi.

This implie5 furthermore
“ 0\ (%2 o
(U 0 =

for any two F-invariant functioni,, 8,£ : X (C) - For if k. X(C) » E.
is an F-invariant function such that k 2: 8, k 2: F, (**) gives

POV (F 0y (20

0 & 0 « 0 ¢
Now putting 8 = f3and £ = 1 in(***), we Jind

[(ar, )]+ [(br, )] = lar. )] + [be1]
For the replete ideals @=np p's b = np pvp, this means
0] Tal + b1 = laba1 4 [b¢].
for if we put a(a) = e?vP<,, fi(a) = c?uP", then we have
(ar,a) = L(a), (bl1,/3) =L(b). (or,a/d) = /(ob:x,)-
On the other hand. we obtain the formula
(@) [al+[b, @ [ab,l + |

in the following manner. We have two exact sequence™ of ( ohcrcnt metrized
o-modulc<,:

0 — (o1br. o) — (ar. @) — ag/atby — O,
0— b)) — (0. ) — o/by — 0.

A5 ctr and bpare relatively prime, i.e., Ot + by = ci. it follows that





ap/ashy — m/bl
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is an isomorphism, €0 that in the group KO(i5) one has the identity
fadarbrl = fa/bd, and therefore

[(a,,a)] -[(a,b,.a)] @[(o, 11]- 1(b,, DI,
and so
[a[-[ab,1€ 1-[b,I.
From (1) and (2) it now follow5 that
[a] + (67 = [absc| + [br] = laboobe] + 1 = |ab] + 1]

In vieYs- of the isomorphism Ko(i5) € K°(t:i), this i5 indeed an identity
in Ko(fi). D

§6. The Chern Character

The Grothendieck ring Kq(i5) is equipped with a canonical “-Urjective
homomorphism
rk: Kqo(i5) —--,. Z.

Indeed. the rule which associates to every isometry class /M) of projective
metrized o-modules the rank

rk{Mj = dimK(M ®, K)

extend€p by linearity to a ring homomorphism F(i5) ----+Z. For a short exact
Sequence O -+ M' -+ M -+ M" -—+ 0 of metrized tJ-modules one has
k(M) = rk(M) + rk(M"), and so rk(IM} - {M} +{M"}) = 0. Thus rk is
zero on the ideal Ro(0) and induces therefore a homomorphism Ko(i5) ----- +Z:.
It is called the augmentation of Ky(8) and its kernel/= ker(rk) is called
the augmentation ideal.

(6.1) Proposition. The ideal I, re.w 1% is generated as an additive group
by the elemenls tal - 1, resp. ([a] - 1)(Ibl - 1), where a. b vary over the
replete idea/€p of K.

Proof: By (5.6), every element€ E Ko(O) is of the form

P =Y onila]
i=1
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1f$ E /. then rk(0 = L;=,n, =0, and thus
. @I>InJ-1>@l:>crmnl-u

The ideal /2 is therefore generated by the elements ([al- !)(Ib] - 1). Ac.
[c)([n]- D(IbL- D@ (([ml- - ([cI- 1) (bI- 1.

these elements already form a syslcm of generators of the ahelian group /2
m]

By (5.7), thi:,, gives us the
(6.2) Corollary. /?=0.

We now define
grKo(0)=ZEB/

and tum this additive group into a ring by putting xy =0 for x, y E /.

(6.3) Definition. The additive homomorphi:,,m
. 1(@) =$-rk(O
iz,, called the first Chern class. The nmpping
ch: Ko(O) -+ gr Ko(0), ch(n =rk(O + (1($).
iz-; called the Chern character of K(8).

cl: Ko(8)-------;

/,

(6.4) Proposition. The Chern character
ch: Kg(0)------ + gr Ko(0)
i.€p an isomorphi.€m of rings.

Proof: The mappings rk and ¢, are homomorphi5ms of additive group€. and
both are also multiplicative. For rk this js clear, and for (1 it is enough to
check it on the generatof5 x =[al,\'= !bJ. This works because
Ci(xy)=xy-I =(r- D+(y- D+C<- D(y-H=ri(.-D+l1y).
because (x - I)(y - 1) = 0 by (5.7). Therefore ch is a ring homomorphism.
The mapping
ZEB/ -+ Ko(l'0), 11EB@ i+ & *n,

is obviously an inverse mapping, so that ch is even an isomorphi€m. 0
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We obtain a complete and explicit description of the Chern character by
taking into account another homomorphi€m, as well a,; the homomorphi€@m
rk: Ko(0) --+ Z, namely

det: Ko(0) -  Pic(O)
which is induced by taking determinants det M of projective o-modules M
as follows (see §4). detM is an invertible metrized o-module, and therefore
of the form L(n) for some replete ideal n, which is well determined up
to isomorphi,;m. Denoting by [det MI the class of a in Pic(0), the linear
extcm,ion of the map {M) -+ rdetM] give€ a homomorphi<,m
det: FO(0) - Pic(O).
It maps the subgroup Ry(8) to I, because it i,; generated by the clements
IM) - {M)+ /M"/ which arise from €hurt exact sequence€
0- M- M- Mo
of projective metri7ed o-modules and which, by (4.7), satisfy
det{M) = [detM] = [dctM' ® det M"J
= [dct M'I[det M"J = det{M")det/M"\.
Thu-; we get an induced homomorphi,;111 <let: Ko(8)--+ Pic(O). It satistlc€
the following proposition.

(6.5) Proposition. (i) The c111lonica/ Jomomorp/Ji.m1l
Pic(8) -  Ko(0)*

is injective.

(ii) The restriction ofdet to I,
<let:/ -  Pic(O),

i.@ an isommphi @m.

Proof: (i) The composite of both mappings
Pic(O) - Ko(0)*€  Pic(8)
is the identity, -;ince for an invertible metrized o-module M, one clearly has
dctM = M. Thi5 give (i).
(ii) Next. viewing the elements of Pi/'(8) a<, clement€y of K(0),
8:Pic(O)-t, O(x)=x-1,
usan inver€e mapping to <let : / - Pic(O). In fact, one has
= id since dct([o] - 1) =dctlol = ], and 8 udet = id ...ince
8(det(loj - 1)) = O(det[nJ) = O(fal) = [oj - | and because of the fact that
li€ generated by clements of the fonn la] - 1 (see {6.1)). D
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From the i€omorphism det /. Pic(8), we now obtain an
isomorphism
grko(8) i .. Z EBPic(8)
and the composite
Ko(8) @ gr Ko(8) €ZEBPic(6)
will again be called the Chem character of Kp(8). Observing thal

det(cy(l;)) = dct(l; - rk(l;) 1)= det(l;), this yields the explicit description
of the Grothendieck group Ko(8):

(6.6) Theorem. The Chem character gives an isomorphism
ch: Ky(6) ... ZEBPic(8), ch(,;)= rk(l;) EB det(l;).

The expert should note that this homomorphism is a realization map
from K -theory into Chow-theory. Identifying Pic(8) with the divisor class
group CH'(6), we have to view Z EBPic(O) a@ the "replete” Chow
rin!!,CH(B).

§7. Grothendieck-Riemann-Roch

We now comider a finite extension LI K of algebraic number field5
and study the relations between the Grothendieck groups of L and K.
Let o, resp. O, be the ring of integers of K, resp. L and write
X(C) = Hom(K,C), Y(C) = Hom(/,,C). The inclusion i: o---+ () and the
surjection Y(C)---+ X(C), a i-—+ alK, give two canonical homomorphi€ms

i*> Ko(8) - Ko(O) and i*: Ko(i5) --c- Ko(8).

defined as follows.

If M is a projective metrized o-modulc, then M ®, O is a projective
0-module. As
M R DNe =M R, O®yz C = Me Q. Le.
the hermitian metric on the K:c-module M,c extends canonically to an
F-invariant metric of the Le-module (M ®, 0)::. Therefore M ®c,0 is
automatically a metrized 0-module, which we denote by i*M. If

1 1

0- M - M- M. 0
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isa short exact sequence of projective metrized a-modules, then

0----,- M' @ 0----;,-M ® 0----;,-M* @, 0----;,-0
i5a t>hort exact sequence of metrized CJ-module€y. becau<;e O it>a projective
o-module and the metrics in the sequence

0-n M@ -oosie M o= M@ 3,2 O
simply extend Lir-sesquilinearly to metrics in the €equence of Lr:-modules
0--—;,- Mc®K. Le ----;- MC @K,- Le -+ M@®K,_-Lr:--+0.

This is why mapping, in the usual way (i.e.. via the representation
Ko(O) = Fo(O)/Ro(0)),
M>-+1i'MI€IMON01
gives a well-defined homomorphism
i* : Ko(O) ---+ Ko(O).
The reader may verify for himself that this is in fact a ring homomorphism.
On the other hand, if M is a projective metrized 0-module, then M
is automatically also a projective a-module. For the complexification
M@: =M ®;c:C we have the decomposition

Mc € EBM, @ EB EBM, @ EB Ma
TEY(l) acX(C) rir EX(:C)

where MT= M ®0.TC and
Ma€ M0o.,C € EBM,

The (:-vector space€ MT carry hermitian metrics (, )Mr- and we dcline the
metric {, )M" on the C-vector space Mrr to be the orthogonal sum

e = Looym,

This gives a hennitian metric on the Kr:,-module M[-, whose F -invariance
if> clearly guaranteed by the F-invariance of the original metric ( , )u. We
denote the mctrized a-module M thus constructed by i*M.

IfO-> M > M- M"'s 0isa short exact sequence of projective
metrized 0-modulcs, then
Ot P*M'==—t *M =+ M-+ O
is clearly an exact sequence of projective mctril:cd a-modules. A€ before,
thb b why the correspondence
Mf----i-[i*M]
gives us a well-defined (additive) homomorphism
i*: Ko(0)-——+ Ko(6).
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(7.1) Proposition (Projection Formula). The diagram

Ko(0) x Ko(B) Ko(O)
Ko(8) x  Ko(8) Ko(i5)

is commutative. where the horizontal arrows arc multiplication.

Proof: If M, resp. N, is a projective mctrized 0-module, resp. o-module.
there is an isometry

*(M ®V i*N) € *M ®, N

of projective mctrized o-modules. Indeed, we have an isomorphism of the
underlying o-modules

M®o (N®, C)) @ M®o N. a® (h@c)1-+ca® h.
Tensoring with it induces an isomorphism
Mz @, (No ®k,. Le) = Mp @k, N«;,l
That_this_is an i50metry of metrized K,€:-modules rc@ulh from the

distributivity
1:1ym, N, @(Li. yw)l N,
it i,
by applying mathematical grammar. ]

The Riemann-Roch prohlem in Grothendieck"s perspective i5 the task
of computing the Chern character ch(i*M) for a projective metrized O-
module Min terms of ch(M). By (6.6), thi€ amounts to computing det(i.M)
interms of det M. But dctM isan invertible metrized O-module and is
therefore iwmetric by (4.5) to the metrized 0-module L(QI) of a replete
ideal Qt of L. N1IK (Qt) i€ then a replete ideal of K, and we put

NL1KidctM) :@ L( NL1Ki'll))

This is an invertible metrized a-module which is well determined by M up
to isometry. With this notation we first establish the following theorem.

(7.2) Theorem. For any projective metri7ed 0-module M one has:
,kU,M) € rkiM) rkiO),
det(i*M) € Ntw(detM)0, (deti*Oyk(MI_
Herc we have rk(O) = (L: K].
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Proof: One has MK:=M @, K =M ®o 0@,)K =M@o L == ML and
therefore

rk(i, M) = dimg (Mg ) = dimg (M) = dimg (M)IL : K| = k(M) tk(O).
In order to prove the second equation, we fin,! reduce to a special case. Let
A(M) = det(i,.,M) and p(M) = NLIK(<leIM)@,, (deti.0)'k(MJ.

If 0 -+ M -+ M -+ M" -+ 0 is a Short exact sequence of projective
mctri/cd 0-modules, one ha€

M) s I(M)®0, (M) and pM) S' p(M) ® p(M").

The irnrnorphi€m on lhe left follows from the exact sequence O----+ i*M'
*M -+ i*M" -+ 0 by (4.7), and the one on the right from (4.7) al50. from
the multiplicativity of the nonn NL K and the additivity of the rank rk. Asin
the proof of (5.6). we now make use of the fact that every projective metri:,-ed
0-module M projects via an admb@iblc epimorphism onto a suitable O-
module of the fonn L(QI.) for some replete ideal Q(. Thus (*) allows us to
reduce by induction on rk(M) to the case M = /(Q{). Here rk(M) = I.
we have to c5tablish the isomorphism

det(i, L) = L(Npx @) @ deto O

For the underlying a-modules this amounts to the identity
deto Ay = Npjx (Ar) deto O,

which ha€ to be viewed as inside delK L and which is proved a€ follows.
1f O and o were principal ideal domains, it would be obvious. In fact, in that case
we could choose a generator a of Q{1 and an integral basis wi. , COn

of O over o. Since NLIK (a) i€ by definition the determinant det(T,,) of the
transformation T,,: L----+ L, t--+ ax,we would get the equation

awp AL A e, = Npjg @) AL Awg)

the left-hand €ide, re€p. right-hand side, of which would, by (1.6), gcncrale the
left-hand €ide, resp. right-hand side, of (**). But we may alway€ produce
a principal ideal domain as de€pired hy passing from Oio to the localization
Oulop for every prime ideal p of o (see chap. 1,* 11 and *3, exerci5e 4). The
preceding argument then shows that

(deto q¢1)p = dctop Q¢fe = NLIK(Q{1y deto,, Op = (Ni 1K (2{1)det; O)p,

and since this identity b valid for all prime ideals p of o, we deduce the
equality(**).
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In order to prove that the metric’> agree on both sides of (**), we put
M = L(2l), N = L(O), a= Nt.1K(2l) and we view M,N,a as metrized
o-modules, One ha€ Mr: = N-: = Le and a,:: = Kc, and we consider the
metric€» on the componenb

Mrr@EfIC, Nrr@EfIC, Urr@cC,
il irl
where a € Hom(K,C) and r £ Hom(L,C) is such that rla. We have to
show that, for i;, T/ € det:c Mri and a, hE  one has the identity
{ai;hrd)ctelV = (ah)a-,{i;,17)deteV,
For thi5, let 21.:x, = nlli(, ~s3v-+%, S0 that one gets

a®"= NL1kem™> = 1 pvp

ploc
with vp = L'lIP f131pVv'l. Then
xYN,,. = Lxrfr, (x.m, = Et’" LR
A
(a.b)q, = ¢rab, Vp, = Z Frmavp = Y vy
Biva Tl
Let @ =x1A ... A\n, 10 =y1l\.. n Yne We number the embeddings r la,
rl,.., ri1,put i = vir. and fonn the matrices
el 0
A=), B={i). D:( )
0 oo
Then, observing that
det(D) = nev—... = N enipoveii= evp,..,
r ‘131Pa

we do indeed get
(a@hry)uctM,, =ah{i;17),1c1M,,.
= abdet( (AD)(BD)Y) = ah (det D)?det(ABY
:ezvp,,.ah {i;, 1detN, = (a h),,, (i;, 1J)delN
This proves our theorem, [m]

Extending the formulas of (7,2) to the free abelian group
Fo(0) @ EflZ{M}
™
by linearity, and pm,sing 10 the quotient group Ko(0) = Fo(0)/Ro(0)
yield!", the following corollary.
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(7.3) Corollary. For every classt e Ko(i.5), one has the fomwins
ckU,s) @ [L . KJck(sJ,
det(i*O = [dcti*O]rk(/;JN, 1ddetn.
The square of the metrized o-module dcti*O appearing in the second

formula can he computed to be the discriminant ilLIK of the extension L IK,
which we view as a metrizcd o-module with the trivial metric.

(7.4) Proposition. There i.€ a canonical isomorphism

(deti, O)®? = oy x

of mctrized o-modu/e8.

Proof: Com,ider on O the bilinear trace map
T:0x0— o0, () Tryxby).
It induces an a-module homomorphism

T :detC".J®detO -

given by
Tl A Aa) ® (B A A B)) = det(Trp k(o))

The image of T s the di5criminant ideal ilt.IK, which, by definition, is
generated by the discriminant5

d(evl..... W,1) = det(TrL,K(cv,cv1))

of all ba@e€ of LIK which are contained in 0. This is clear ir (') admits
an integral basis over o, since the a, and /3, can be written in terms of
such a basi€ with coefficients in 0. If there i€ no such integral basis, it will
exist after localizing Op lop at every prime ideal p (see chap. I, (2.10)). The image
of

Tp 1 (det Op) ® (det Op) —> Oy

is therefore the discriminant ideal of Oplop and at the same time the
localization of the image of T. Since two ideals are equal when their localizations
are, we find image(T) = i)LIK- Furthermore, T has to be

injective since (det Ofg:? is an invertible o-modulc. Therefore T is an
v-module i€omorphism.
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We now check that

Te : (det(@®?) . —> (Z’L\K)il
is indeed an i€ometry. For Oc =0 ®c:. IC, we obtain the K:_--module
decomposition

=B 0,

where a varies over the set Hom(K. C). and the direct sum

Oa @ ffi(O®o,c I:)@ ffii:

10

is taken overall T Hom(L, C) such that r [k = a. The mapping O::_- - K
induced by TrLIK : 0--,.. o is given, for x = ffi xm, x... € 0... by

Tl K(X) =
where Tra (xrr) = the xr.r E C being the components of x,- The
metric on (i*Oh: = is the orthogonal sum of the standard metrics

>y = Leve =Tr,,(XYy)
10

on the vector spaces (i.0)r = 0,,. = EBv m C. Now let X,, vy, B
i =1, .. a1and writex = x1/\... Avny =y1n  Ayy, E det(O,. ,) The

map Tc splits into the direct sum T,c = EB,,. Tc, of the maps

J'a : det(Orr) ®c dct(Oa) -+ (iJLlda = C
which are given by
To(r @ y) = det(Tra Gy} |
For any two n-tuples \;, Y; E Orr we form the matrices
A@ Cire(xy.)), A'@ (Tle(;;v;)), 8 € (Tca(,x;i). B' @ (T.-o(y.v})).
Then one has AA* = BB'.and we obtain
(T ®NT ' @), ), =T @ N TR
© dct(T!-0(,y1)) det(T'-e(,;v;l) € det(AA") € det(BB')
@ det(T i))det(T- (v, ;) € det( (x..x; le) det({y.,, y: le)
= (x.x)detOa (_y. Yhawoer = (X ®Y, \' ® Y')de10a po-
This @how€ that T,C i€y an i€pometry. [m]
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We now set out to rewrite the result€ obtained in (7.2) and (7.4) in the
language of GROTI-/t."",J)!HK's general formalism. For the homomorphism i*
there b the commutative diagram

Ko(O)ez

,,1 11LK1

Ko(®)eZ,
because [L: K] time5 the rank of an CJ-module Mis its rank as o-module.
Therefore i* induces a homomorphism
i9: /(0)-———+ /(8)
between the kernels of both rank homomorphi€ms, 50 that there j5 a
homomorphism
i* :grKo(0) ------- +gro(3).

It is called the Gysin map. (7.3) immediately gives the following explicit
description of it.

(7.5) Corollary. The diagram

giKsro) © ZEBTC(O)
' 1K Ta-N1 K
ar Ko(0) € ZEB Pic(8)

is commutative.

We now consider the following diagram

Ko(O) __: !_. grKo(O)

Kn(0) gro(fh)

where the Gysin map i* on the right is explicitly given by (7.5), whereas
the determination of the composite ch o i, is precisely the Riemann-Roch
problem. The difficulty that confronts us here lies in the fact that the diagram
is not commutative. In order to make it commute, we need a correction,
which will be provided via the module of differentials (with trivial metric),
by the Todd elm.\, which is defined as follows.
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The module .0{0,, of differentials is only a coherent, and not a projective
0-modulc. But itu> class fDI, 1 is viewed as an clement of Ky(0) via the
PoincarC isomorphism

Ko@) > k°0)l

and since rko(Db y = 0, it lies in / (0).

(7.6) Definition. The Todd class of Olo is defined to be the element

Td©Ol0) = 1 = e (12byo]) = 1= 2125} € gr Ko@) @ 2L |

Because of the factor 1/2, the Todd class docs not belong to the ring
gr Ko(O) itself, but i:- only an element of gr Ko(0) ® ZI{ ]. The module
of differential5 .ab10 is connected with the different oLk OF the extension
LI K by the exact ,;cquence

0---+"'Dr.1K ---+ 0---+ Q@Jlo -+ 0

of 0-modules (with trivial metrics) (-cc §2, exercise 3). This implies that
1.122)100 = 1- [.1.hw |- We may therefore describe the Todd class also by the
different:
1
TdOlo) = 1 + 5 (Dki— D= %(1 +@ukl).

The main result now follows from (7.3) w,ing the Todd class.

(7.7) Theorem (Grothendieck-Riemann-Roch). The diagram

Ko(i5) ¢ grkn(0)

Ko(0) & ar Ky(0)

is commulative.

Proof: For€ E Kq(i5). we have to !',how the identity

chU,0 € ;,(Td(Olo)ch(sl).
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Decomposing ch(i*O = rk(i*O EB c1 (i*O and ch(S) = rk(,;") EB¢c, (0 and
ob&erving that
Td(Olv)ch(s) € (1+% (["DL,Ki - 1)) (k(s) + c,(m
@.ken+[,,M + % k(sI<I"DLIKI - 1]]

it rnffices to check the equations

@ Jku.n €,k(s),kU.[01).

® U, 1@:c 113 + ket 1u10D
and

© k(,101) €@:.(D).

(©)] 2c1(;,[0J) @ ;,(I'D11K1 - 1)

in gr Ko(0). The equations (a) and (c) are clear because of rk(i*fO]) =
rk(i*CJ) =[L: K]. Toshow (b) and (d), we apply <let to both sides and are
reduced by the commutative diagram (7.5) to the equations

© det(LO = NL1K( (detO) [deti*CI]'k(/;J,

) (deti*C3)™ = NL1K(det'.DLIK>-

But (e) is the second identity of (7.3), and (t1 follow5 from (7.4) and (2.9). O

With this final theorem, the theory of algebraic integeVi can be integrated
completely into a general programme of algebraic geometry as a special case.
What is needed is the use of the geometric language for the objects considered.
Thus the ring o is interpreted as the €cheme X = Spec(o), the projective
metri7ed o-module5 a,; metrized 1.et tor bundles, the invertible c,-modules as
line bundles, the inclusion i : o---+ CJ a5 morphism f : Y = Spec(CJ) -+ X

of schemes, the class as the cotanient element, etc. In this way one
realizes in the present the old idea of viewing number theory a5 part of
geometry.

§ 8. The Euler-Minkowski Characteristic





Considering the theorem of Grothendieck-Ricmann-Roch in the special
case of an extension K 1Q, amounts to revisiting the Riemann-Roch theory
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of S3 from our new point of view. At the center of that theory was the Euler-
Minkowski characteristic
x(a) = -logvol(a)

of replete ideals a of K. Here, vol(a) was the canonical mearnre of a
fundamental me€h of the lattice in Minkowski space K:.. a€h. IR defined by
a. This definition is properly explained in the theory of mctriLed modules of
higher rank. More precisely, instead of considering a as a metrized o-module
of rank I, it should be viewed as a metrized Z-module of rank [K : QJ.
This point of view lead€ us necessarily to the following detlnition of the
Euler-Minkowski characteri@tic.

(8.1) Prnposition. The degree map
degK : Pit (1) ---+ IR, degK (laj) = - log\Ji(a).
extends uniquely 10 ;1 homomorphism
XK: Ko(O)-+ €
on Ko(0), and thereby on K°(0). It is given by
XK =degudet
and called the Euler-Minkowski characteristic over K.

Proof: Since, by (5.6), Ko(0) i€y generated asan additive group by the
elements [aJ E Pic(O), the map degK on Pic(O) determine€ a unique
homomorphism Kp(8) = IR which extends dcgK. But such a homomorphism
i€ given by the composite of the homomorphi@m€

Ko(0)®  Pic(0)@ IR

a<, the composite Pit (8) .. Ko(0) € Pit (17) i€ the identity. (W)

Via the Poincare isomorphism Ko(0) €  K'\a). we transfer the maps
det and XK to the Grothendieck group K°(0) of coherent metrized ()-
modules. Then proposition (8.1) is equally valid for K°(0) a€ for Ko(0).
We define in what follows XK(M) = xd[MI) for a metrized n-mudule M.
If LIK is an extension of algebraic number fields and i : n » CJ the
inclusion of the maximal orders of K, resp. L, then applying degK to the
formula (7.2) and using

dcgdQl) € - 10g;JI(11) @ - log ;JI( NLIK (‘1) € degK ( NLIK (113)
(sec (1.6), (iii)) gives the
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(8.2) Theorem. For evely coherent O-modulc M, the Riemann-Roch
formu/:.J
Xk (M) = deg, (det M) + ck(M) xx (i.0)

is valid, and in particular, for an invertible metrized 0-module M. we have

xk (M) = deg; (M) + xx (i.0).

We now speciali7e to the case of the base field K = Q. Ihat is. we
consider metrized Z-modulc<;. Such a module is simply a finitely generated
abclian group M together with a euclidean metric on the real vector space

Mi =M @y
Indeed, since Q ha<; only a single embedding into ie, Qrn = a
metric on M is simply given by a hermitian scalar product on the [>vector
space M,c = M1 ® C. Restricting thi:- to M 1 give:- a euclidean metric the
sc@quilinear extengion of which reproduces the original metric.

If M i€ a projective metried Z-module, then the underlying Z-modulc
is a finitely generated free abelian group. The canonical map M —+ M ® IR,
a1+ a® |, identities M with a complete lattice in Mn;;. If a;, . a11is a
Z-ba@i€ of M, then the set

(D:‘x|a|+---+X,,u,,| veR, 0=<x < l”
is a fundamental me@h of the lauice M. The euclidean metric { , )
defines a Haar measure on Mz1,. Once we choo:-e an orthonormal —basis
c1, , e110f Mik, this Haar measure can be expres€ycd, via the i<;omorphism
MJ.......,. RN, 3¢t +== -+ ey i+ Ct1, ... , Xn), by the Lebesgue measure

on R.". With respect to this measure, the volume of the fundamental mesh (/)
is given by

vol(<P) = idet(fa.a)l

It will be denoted hy vol(M) for short. It does not depend on the choice of
Z-basis al, , aj1because a different choice is linked to the original one
by a matrix with integer coefficients which also ha<; an inverse with integer
cocflicients. hence has determinant of ab<,olute value I.

A more elegant definition of vol(M) can be given in terms of the invertible
metrizcd Z-modulc det M. det M"9:. i€ a one-dimensional IR-vector space with
metric (. )cterM, and with the lattice Jet M isomorphic to?.;, If x E det M i€
a generator (for instance, x = ajn. naii), then

olM) = Ixlamr = VX, $hgernt -
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In the present case, where the base field i:;. Q, the degree map
deg: Pic(Z) ----- + IR

isan isomorphism (see§ I, exercise 3), and we call the unique homomorphism
arising from this,
X = degodet: K°(Z)------ +IR,

the Hu.ler-Minkowski characteristic. It is computed explicitly a:;. follow<;.

(8.3) Proposition. For a coherent metrizcd Z-modu/e M, one ha.€
X(M) = log#Mt<,, - logvol (M/M.r)-
In this formula M,, denotes the torsion subgroup of M and M/ M,or

the projective metrized Z-module which receive:;. its metric from M via
M®IR=M/M,,,®11?.

Proof of (8.3): If M is a finite Z-module, then the detenninant of the clas:;,
LMJ E K°2) is computed from a free re:;,olution
Q-+ E-----+ F @ M-----+0,

where F = Z" and E = ker(a) € Z". If we equip F ® IR = E ® IR =JR"
with the standard metric, the €equence becomes a short exact sequence of
metrized Z-modules, becau;.e M ® R =0. We therefore have in K°Cl):

IMI € [FI - [£].
Let A be the matrix corresponding to the change of basis from the :;.tandard
basisci, ,e,.0fFIOaZ-basise;,. ,C;10fE. Thenx=el/\ Ne,,,

resp. t = e;n .. I e@.isa generator of det F, re@p. dct !:, and
X =det 4> t = (F: E) *x =#M *x
The metric u Il on det E is the same as that on det F, <0 that
x(E) @ deg(<IctE) @ - loglIX'll € - log(#MIIXIl) € - \og#M + x(F),
and then
x(M) € x(IFI -LEI)€ x(F) - X(E) € \og#M,

For an arbitrary coherent metrized Z-module M we have the direct sum
decomposition
M = MtorffiM/Mw,
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into metrized Z-modules. If a;, , rxn is a basis of the lattice M/M1p,,
then r = a1 A .Aan is a generator of detM/Mior; then Xx(M/Mw,)
= deg(detM/My,) = -loglixll = -logvol(M/M;or). We therefore

conclude that

x(M) = x(M1or) + x(M/M101) = log#M1lor - logvol(M/M1,"). [

The Euler-Minkowski characteristic of a replete ideal a,
x(a) = -logvol(a).

which we defined ad hoc in §3 via the Minkowski measure vol(a) now
appears a5 a €imple special case of the Euler-Minkowski characteristic for
metrized Z-modules to which the detailed development of the theory has led
us. Indeed. viewing the metril:ed o-modulc L(a) of rank 1 associated to u as
the mctrized Z-module i.L(a) of rank [K: QI, we get the

(8.4) Proposition. x(a) = x(i@L(a)).
Proof: Letu = 0100., = oLnplcx: pp. The metric (, )1,L(ol on the C-vector

space Ki, = TTrEX(i1 C is then given by

Y.L = LCZVP,X.y..

where p, is the infinite place of K cor to the ing
r: K-> It results from the standard metric ( , ) via the F -invariant
transformation

T Ke---+ K,¢, (x).eX(iCJ f-
Equivalently,

(e"PrxONCX (.-

L) = (TX,Ty).
The volume vol(i*L(a)) of a fundamental mesh of the lattice or in Kut with
respect to the Haar measure defined by the euclidean metric on Kin i€ then
the volume of a fundamental mesh of the lattice Tar with respect to the
canonical measure defined by,( ). Thus

so!(;,L(a)) € .ol(Tor).
In the representation Kw.= TTpi= Kp, the canonical embedding

Ku,;= K R---+ K.@: =K @I

maps an clement to the element (x, )rex (Clwithxr = r.1p. Here we
extend r to Kp,- restriction of the transformation T: (r,) H (evP,x,)
to k3. = TTlll'X kp is therefore given by (xp) H (e"rxp), The lattice Ta; is
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then the @ame lattice which was denoted a in §3. So we obtain
vol(i.L(nJ) € vol(n),
e x L@ = x @] =

Given thi<. identification. the Riemann-Roch theorem (3.4) proven in §3
for replete ideals n,

x(a) = dcg(n) + x(0).
now appears as a special case of theorem (8.2), which f.ays that

X(i.L(nJ) €deg(Linl) +x(i,0).





Chapter IV
Abstract Class Field Theory

§1. Infinite Galois Theory

Every field k equipped with a distinguished Galois extension: the
separable closure Its Galois group 6k = G(flk) is called the absolute
Galois group of k. As a rule, this extension will have inllnite degree. It
does, however, have the advantage of collecting ail finite Galois extension5
of k. This is why it is reasonable to try to give it a prominent place in Galois
theory. But such an attempt faces the difficulty that the main theorem of
Galois theory doc:, not remain true for infinite extensions. Let us explain this
in the following

Example: The absolute Galob group G, = G(FpiFI') of the field FI' with
p elements contains the Frohenim automorphism rp which is given by

rit=rr forall x EFP.

The subgroup (tp) = {tp" Ine Z} has the @ame fixed field irp as the whole
of G1r,P. Bul contrary to what we are u<ied to in finite Galois theory, we
find (tp) f- Gw,.. In order to check this, let u,; con@truct an element VI E G_,.
which doc€ not belong to (rp). We choose a sequence /aninm of integers
satisfying

dn = dy, mod m|

whenever but weh that lhere is no integer a @atisfying a;; = a mod n
foralln E  Anexample of such a sequence is given by a"= n'x;;, where
we write n = u'prigi), (0, p)= l.and | = n'ry;+ plimyi. Now put

Vin =tpa“lwl" E G(IFpul[I<'T).
If IFp™ £; IFp'. then m In, so that an = am mod m, and therefore
VI, i St I = 4p<1” I, =Vime
Observe Lhat tpl"i,n, has order m. Therefore the ifr,; define an automorphism
i/l of P\, = ue=IF,,, Now if, cannot belong to (rp) because i1 = tp°, for

a € Z, would imply ifrl. p= tp™IF,, 1 = qinni Rl and hence a'= a mod n
for all n, which is what we ruled out by construction.
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The example does nol mean, however, that we have to chuck the main
theorem of Galoi" theory altogether in the case of infinite extensions. We just
have to amend it using the observation that the Galois group G = G(.QIk)
of any Galois extension DIk carries a canonical topology. This topology is
called the Krnll topology and is obtained as follow&. Forevery a EG we
take the cosets

aG(DIK)

as a basis of neighbourhoods of a, with K Ik ranging over finite Galois
subextensions of Q Ik. The multiplication and the inverse map

GXG-- +G, (a,r)i-------- +ar, and G

arc continuous maps, since the preimage of a fundamental open neigh-
bourhood arG(DIK), resp. a *G(QIK), contains the open neighbourhood
aG(QIK) x rG(.QIK), resp. aG(.QIK). Thu€ G is a topological group
which satisfies the following

(1.1) Proposition. For every (finite or infinite) Galois extemion DIk the
Galois group G = G(Q Ik) is compact Hausdorff with respect to the Krull
topology.

Proof: If a, r E G and a i- r, then there exists a finite Galois subextension
Klk of Dik such that alk -f. rlK, sothat aG(.QIK) #- rG(.QIK) and
thus aG(.QIK) n rG(QIK) = 0. This shows that G is Hausdorff. In order
to prove compactness, consider the mapping

h,.G-TTGIKIK), a-TTalk-
K K

where K Ik varic& over the finite Galois subextensions. We view the finite
groups G(KIk) as discrete compact topological groups. Their product is
therefore a compact topological space, by Tykhonov's theorem (see [98]).
The homomorphism his injective, because alk = | for all Ki¢ equivalent
to a = I The sets U = nKi'Ko G(KLi.) x {ir} fonn a suhbasis of
open €cts of the product TTK G(KIk), where Kolk varies over the finite
rnbextensions of Qlk and & E G(Knlk). If a E G i€ a preimage
of a. then 1i-}(U) = aG(QIKQ). Thus h is continuou€y. Moreover h(aG(.QIKo))
= h(G)nU, soh G t-+ h(G) is open, and thus a
homeomorphism. It therefore @uftice€ to show that h(G) b closed in the
compact set TTK G(KIk). To @ee this we consider. for each pair L' 2 L of
finite Galoi€ subexten€ion€ of DIk, the €ct

ML @ lnak En Gki>tl aLiL ¢ ay
K K
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One clearly ha€ h(C) = nr. ML'iL- So it suffices to Show thal MulL
i5 clo@ed. But if G(LIK) = {<7,, ,an), and S, <; G(L'Ik) i5 the set of
extensions of a, to L', then

Mu,1 € U( N 6K xS, x Im)),

1=1 K=/Jf

i.e., ML'IL is indeed clm.cd. (]

The main theorem of Galois theory for infinite cxtem,ion€ can now be
formulated as follows.

(1.2) Theorem. Let S?lk be a (finite or infinite) Galois extension. Then 1hc
as.@ignment
Kc-+G(DIKI

i9 a I-l1-correspondence between the subexlensions Klk of S?lk and the
closed subgroups of G(S?Ik). The open @ubgroup!> of G(S?Ik) correspond
precisely to the finite . @ubextensions of Q Ik.

Proof: Every open subgroup of G(S?Ik) is also closed, because it is the
complement of the union of its open cosets. If Kjk is a finite subextemion,
then G(S?IK) i" open, becaw,e each a E G(S?IK) admits the open
neighbourhood aG(QIN) C; G(S?IK), where Nik is the normal closure
of Klk.If Klk isanarbitrary <,ubcxtcnsion, then

G(2|K) =N G($21Ki).

where K, Ik varies over the finite subextensions of K Ik. Therefore G(S? IK)
is clo,,.cd.

The assignment K 1+ C(S?IK) is injective, since K is the fixed field of
G(.QIK). To prove <urjcclivity, we have to show that, given an arbitrary
dosed subgroup Hof G(DIk), we alway€ have

H ©G(DIK),

where K is the fixed field of fl. The inclusion I/ <; G(S?IK) is trivial.
Conversely, leta E G(S?I K). If L IK b a finite Galoi€ subextension of Q IK.
then aG(S?IL) is a fundamental open neighbourhood ofa in C(S?IK). The
map H € G (LI K) is certainly surjectivc, bccau€pc the image Tl has fixed
field Kand is therefore equal to G(LIK), by the main theorem of Galoi€
theory for finite exlensions. Thu€ we may choose a r E H such chat
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TiL = alt, i.e, r E HnaG(DIL). Thbshow€ that a belongs to the
closure of Hin G(S21K), and thus to H itself, w that H = G(QIK).

If H ban open subgroup of G(.QIK), then it is also dosed, and therefore
of the fonn 1l= G(DIK). Bul G(DIK) is the disjoint union of the open
cosets of H. Since G(Q Ik) is compact, a finite number of cosets suffices to
cover the group. Thus there is only a finite number of them; i = G (QI K)
has finite index in G(DIK), and this implie€) that KIk has finite degree. O

The topological Galois groups G = G(DIk) have the special property
that there is a fundamental system of neighbourhoods of the neutral clement
| E G which consists of nomrnl subgroups. Thi5 property leads us to the
abstract, purely group-theoretical notion of a profinite group.

(1.3) Definition. A profinite group is a topologicl:d group G which is
Hausdorff and compact, and which admits a bm,is of neighbourhoods of
| EG consisting of nonnal subgroups.

It can be €hown that the last condition is tantamount to G being totally
disconnected, i.e., lo the condition that each element of G i€ equal to its own
connected component. Every dosed ‘iubgroup H of G is obviously again a
prolinite group. The disjoint coset decompo@ition

G =LJa,H
shows immediately that H is open if and only if the index (G : H) is finite.

Profinite groups are fairly dose relatives of finite groups. They can
be reconstituted rather easily from their finite quotients. For the preci‘ie
de€cription of thi€ we need the notion of prrjective limit, which naturally
occur€p in various places in number theory and which we will introduce next.

Exercise . Let LI/..: he a Galois extemion and Klk an arbitrary cxten\lon, both
contained inacommon exlen€ion .!1?lk. If I. N K =k, then the mapping

G(LKIK) -» G(LIk), ai-+rrj,.
is a topological isomorplmm, that i\, an i\omorphi@m ot group\ an<l a
homcomorphi\m of topological €paces.
Exercise 2. Given a family of Galois cxtensions m 12lk, let Klk be the
of all |k, and K1k the composite of cxten\mn@ K, Ik \ur.:h that
J 1t K K, =k forall i the  one ha a topological homorphi@m

G(KIK) "TTG(K,lk)
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1<:xercise 3. A compact Hausdorff group i€ totally disconnected 1f and only 1f
its neutral clement admit€ a ba@1€ of neighbourhood€p con@iting only of nomal
@ubgroup@.

Exercise 4. Every quotient Ci/1l of a protinite group G by a closed normal subgroup
H i€ a profinile group.

Exercise 5. Let G' he the clo@ure of the commutator subgroup of a profimte group,
and G"h = G/G'. Show that every homomorphi€@m G —+ A into an
ahelian protimte group factorize€y through

§2. Projective and Inductive Limits

The notions of projective, resp. inductive limit generalize the operations
of inter5ection, resp. union. If {X;LEI isa family of subsets of a topological
space X which for any two sets X, X, also contain€ the set X, N X,
(re@p. X, U X;), then the projective (resp. inductive) limit of this family is
simply de ined by

@ X

Writing i if X,-1; X, (resp. X1-:; X1) makes the indexing 5et / into a
directed system, i.e., an ordered set in which, for every pair i, j, there exi5t5
al._such thati .:S k and .i .S k. In the case at hand, such a k is given hy
Xk = X, N X, (resp. Xk = X; U Xp. For i .S j we denote the inclusion
XJ e X, (re:-p. X, o .. X;) by /i and obtain a system {X,,J;i) of @ct€
and maps. The operations of intersection and union are now generalized by
replacing the inclusiom f,, with arbitrary map5.

,Cl X, (resp. € X1=,|d,X,).

(2.1) Definition. Let I he a directed system. A projective, resp. inductive
system over | i@ a family {X;,f;11i, j E/, i j) oftopologirnl space € X,
and continuous maps

—t+ X

| D G—— X+, resp. /1. X,
such thal one has J;, = idx  and
fa= JJo f1, resp. J;l = fikof,,
wheni.:S j.:Sk

In order to define the projective. resp. inductive limit of a projective. resp.
inductive system {Xu. f,1). we make use of the direct product N,,.; X,, resp.
the disjoint union Li,'=, Xi-
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(2.2) Definition. The projective limit
X= 0 X,
of the projective system {X;, /;» is deflned to be the subset
x =lx)ie en X, 1L0r) =, for | s}
iccl
of the product TT,ct X,

The product TT,f-; X; is equipped with the product topology. If the X, arc
Hausdorff, then so -is the product, and it contains in thi5 case X as a closed
,;ubspace. Indeed, one has

where x,, = | (zghtl E nk xk | f,(X;) = x,} sothat it suffices to show
the closedness of the sets X,;. Wriling o TTA<ct Xt > X, for the i-th
projection, the two maps f: = p, fijoP; : TTl<ct X1. -+ X, arc
continuous, and we may write = |X E nk Xk | f.:(X) = /(X)}. But in
the Haubdorff case the equation = f(x) defines a closed subset. This
representation X = [, XIi also  the following

(2.3) Proposition. The projective limit X = € X, of nonempty compact
spaces X is it. @elf nonempty and compact. 1

Proof: If all the X, are compact, then so is the product TT,"" X,, by
Tykhonov's theorem, and rhu5 al<;o the closed rnbset X. Furthermore,

X = , X11_cannot be the empty set if the X, are nonempty. In fact,
as the product f|, X; is compact, there would have to be an intersection

of finitely many X,1 which is empty. But thb is impo%iblc: if all indicel,
entering into this finite intersection satisfy i, j .:'Sn, and if \n E Xn, then the
element (x,);1:-1 belongs to this intcrscelion, where we choose .\, = f;11(.11),
fori _su, and arbitrarily for all other i. a

(2.4) Definition. The inductive limit
X = Illg X,

ofan inductive system {X,, f;1) is deflned to be the quotient

X € (.c1X,)/~
of the disjoint union LJ,C1 x, where we consider two elements r, EX, and
1; E X, equivalent if there exist\ 1 A € i, j such Iha!

J;dx,) = fike).
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In the applications, the projective and inductive systems {X1, /;1} that
occur will not just be systems of topological spaces and continuous maps,
but the X, will usually be topological groups, rings or modules. etc., and
the ;;; will be continuous homomorphisms. In what follows, we will deal
explicitly only with projective and inductive <;ystems {G;, g11) of topological
groups. But since everything works exactly the same way for sy\>tems of
rings or modules, these cases may be thought of tacitly as being treated
as well.

Let {G:- g:1) be a projective, rc\>p. inductive system of topological groups.
Then the projective, resp. inductive limit

G=€ G,. re<p. G= @ U
1

150
il-> a topological group as well. The multiplication in the projective
limit i1-> induced by the componcntwise multiplication in the product
fl.e1 G,. In the case of the inductive limit, given two equivalence classc<;
Xy EG = € G, one has to choo<sc representatives u. and y@ in the
o
same G; in order to define
Xy = equivalence class of :q_H.

We leave it to the reader to check that this definition il-> independent of the
choice of repre<;cntatives, and that the operation thus dclined makes G into
agroup.
The projections p; : [1y=, G, —+ G, resp. the inclusion<; t, : G, -+
U,sc1G,, induce a family of continuous homomorphism1->
0; : eo- Uy, reESp. 8i: G,---- > G

such that 11 = g,y 0i{, rel->p. {¢ = @i o0g,.. fori.:S j. Thi€ family has the
following universal property.

(2.5) Proposition. Jf // i8 a topological group and
hy:H-------- )-Gi-  resp. huGy )-H
is a family of continuous homomorphisms such that
hi=g,;0h;, resp. h, =hjog,;
fori .:S j, then there exisb a unique continuous homomorphism

hi/1----mm-- )-G=€ G,, rew h:G=€» G, YH

! atisfyingh, = g, oh, resp. h, = hog, fora//i E /.
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The easy proof is left to the reader. A morphism between two projective,
resp. inductive systems {G,,g,J) and {G;,g;JJ of topological groups is a
family of continuou5 homomorphisms f; : G,-+ a;, i E /, such that the
diagrams

ST 1L Te e
C @& C,

5
—
i
—

Q—2
Q—Q

commute fori::: j. Such a family (f;),Er defines a mapping

r.Ne - NC;, csp. J. Ll - Llc
1

1%

which induces a homomorphbm
f. € Ci—+ & G, rsp. I @ G-—+ & C,.
et e rer

In thb  way ut , re@p. € , becomes a functor. A particularly important
property of this functor js its so-called "-cxactncs€”. For the inductive
limit €,  exactness holds without restrictions. In other word€. one has the

(2.6) Proposition. Lei a  1c;,g;,1 -+ {G,.gJ) and fJ \G,g9,) —+
,0;)) he morphisms between inductive systems of topological groups
that the sequence

6 g, 2 6

i.9 exact for every i E /. Then the induced €equence

@ c.2+@ ¢ L li¥c
1 1

Hel c)

is afao exact.

prnof: Letc' = li1¥ C;, G =€ G.CI'=4€ G;. Weconsider the
commutative diagram

G o G Bi G!
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Letx E G be such lhat /J(x) =1.Then there exist€ an i andan x, E G, !>uch
that g,(xp =x. As

& i) = gilx) = Lo = 1.

there exists j € i such that fi, (xp equal<; | in C;'. Changing notation, we
may therefore as<;ume lhat = |, so that there exists y, E C; I>uch that
a,(yn =X,. Pulling y = we have u(y) =x. m]

The projective limit is not exact in complete generality, hut only for
compact groups, so that we have the

(2.7) Proposition. Let a 1C;.X;1l-) \G,.x,Jd) :md f, /G,gi) -
/G:‘.X‘l' ) be morphisms between projective systems of compact topological
groups 1,uch that the sequence

c;@ c -l+c;
is exact for every i E /. Then

© C, €@ Q-1+ full ¢

i.€ again an exact sequence of compact topological groups.

Proof: Let x = (t,).ft E ¥!1 G and f,(x) = I. @o that /3,(t) = I for
all 1E7. The preimage!> Y, € a-'(x) s; C; then form a projective

of nonempty closed, and hence compact subsets of the Gf. By thi-,
means that the projective limit Y = full Y, s; € C,; is nonempty, and
a maps every element y E Y to x. 3}

Now that we have at our disposal the notion of projcclive limit, we
return to our slarting point, the profinite groups. Recall lhat these are the
topological groups which are Hausdorff. compacl and totally disconnected,
i.e., they admit a basis of neighbourhoods of the neutral element con€isting
of normal subgroups. The next proposition show!-. that they are preci€ely the
projective limits of finite groups (which we vie\\- as compact topological
groups with respect to the di€ycrctc topology).
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(2.8) Proposition. If C is a profinite group, and if N varies over the open
nomial subgroups o[G, then one has, algebraically a.€ welJ as topologically,
that

c e i e
N

If conversely {G,,>;1) i.9 a projective system of finite (or even proJinile)
groups, then
G=@ G

is a profinite group.

Proof: Let G be a profinite group and let {N, | i E /\ be the family of its
open normal subgroups. We make / into a directed system by defining i j
if N1 2 Ny The groupt, G, = GI/N, are finite since the cosets of Ny in
G form a disjoint open covering of C, which must be finite because G i5
compact. For i .\ j we have the projections gi1 : G, --+ G; and obtain a
projective system /G,. g,1) of finite, and hence discrete, compact groups. We
show that the homomorphism

f:6 —+ M Gy @t TTo a=amodN,
i id

is an isomorphism and a homeomorphism. f is injective because its kernel

is the intersection n,eCt N,, which equals {I} because G is Hausdorff and
the N, fonn a basis of neighbourhood€y of 1. The groups

Us@ [1 G, x [1{Ir;).
as 18

with 5 varying over the finite i>ubsets of /, form a basis of neighbourhood5
of the neutral element in n,e/ G1- As I-(Usn _!lII1 G) = n<cSN,, we see

that f is continuous. Moreover, as G is compacl. lhc image f(G) is closed
in@ G,.Ontheotherhanditisalsodense.Forifx=(x,e EIIN G,,

choose ay EG WhICh is mapped to x1. under the prolectlon G--+ G/Nk,
where we put Nk = niea N,.Then y mod N, = x, for all 1 E S, so that
f(y) belongs to the neighbourhood x(Us n " m G,). Therefore the closed
set f(G) is indeed dense in €@ G,, and so f(G) = |I G,. Since G
i€ compact. j maps closed sets imo closed sets, and thus also open sets
into open sets. This show€p that f : G - € C, is an i€omorphism and &
homeomorphism.

Conver@cly, let {G,,g,1) be a projective system of protinitc groups. A€
the G, are Hausdorff and compact, so is the projective limit G = G,,
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by (2.3). If N, varies over a basis of neighbourhoods of the neutral element
in G, which consists of normal subgroups, then the groups
Us@ [1G; x [1IN;.
1js IES

with S varying over the finite subSets of |, make up a basis of neighbourhoods
of the neutral element in n1e/ G,consisting of normal subgroups. The nonnal
subgroups Us N 0 G, therefore form a basis of neighbourhood5 of the
neutral element in € G,; thus € G, i, a profinite group. U

Let us now illustrate the notion5 of profinitc group and projective limit by
a few concrete examples.

Example 1: The Galois group G = G(.Qlk) of a Galois extension .Qlk
is a protinite group with respect to the Krull topology. This was already
stated in§ 1. If K Ik varies over the fmite Galois subextcm,ions of .Qlk, then,
by definition of the Krull topology, G(QIK) varies over the open normal

subgroups of G. In view of the identity G(KIk) = G(.QIk)/G(.QjK) and
of (2.8), we therefore obtain the Galois group G(QIK) as the projective limit

coik) " \i"" 6Kk
of the finite Galob group5 G(KIK).

Example 2: If p is a prime number, then the rings nEN,form
a projective system with respect to the projections -+ Zlpmz,
forn 2: m. The projective limit

Zp= !,!!!! Zlpnz

is the ring of p-adic integers (sec chap. Il, § ).

Example 3: Let o be the valuation ring in a p-adic number field K and p it:,,
maximal ideal. The ideals p*, n € N, make up a ba:,,is of neighbourhoods of
the zero element O in 0. 0 is Hausdorff and compact, and so is a profinite ring.
The rings o/p”, n EN, arc finite and we have a topological isomorphism

0@ € o/p', af+ n(a mod pn).
n neN
The group of units U = is closed in O, hence Hau:,,dorff and compact,

and the 5ubgroups U("l = I+ p'!fonn a basis of neighbourhoods of | EU.

Thus .
/o= fim Yy

E





i€ also a prolinite group. In fact, we have seen all this already in chap. IL 94.
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Example 4: The Z/11Z, n EN, form a projective <;ystem with respect
tothe projections -+ ZImZ, nlm, where the ordering on Ni€ now
given by divi€ihility, nlm, The projective limit

2=@ znz

was originally called the PrUfer ring, whereas nowaday<; it has become
customary to refer to it by the somewhat curt abbreviation "1.cd-haf*

(or '-zee-hat"). This ring is to occupy quite an important position
in what followp. It contains subring. The group<; nZ, n EN, are
preci<;cly the open subgroups and it i€ easy to verify that

i;nZ € znz.

Taking, for each natural number n, the prime factorization n = T7v p"p, the
Chinese remainder theorem implies the decomposition

£inz @ T1Z/1vz,
P

and passing to the projective limit,

z 0 nzfl

P

This takes the natural embedding of Z into Z 10 the diagonal embedding
et 'llp,ai— (aaa, ..).

Example 5: for the field IF1 with g elements, we get bomorphism€
G(IFgniiFq) € Z/n'll.

one for every n E N, by mapping the Frobenius automorphism ip. to
I mod n'll. Passing to the projective limit give'> an isomorphism

G(IFqifg) € 2

which sends the Frobenius automorphism 'PE G(18',11fq) to IE Z. and the
subfroup (tp) = {‘P"| n E Z] onto the den€c (but not clo5ed) -,ubgroup J.
of Z. Given this, it i€ now clear, in the example at the beginning of this
chapter, how we were able to construct an clement ifr e G( W,,If,1) which did
not belong to (ip). In fact, looking at it via the i1>omorphism G( W°,JIF',) & Z.
what we did amounted to writing down the clement
.0,0.1p,0,0, .. YETTZ1 =1.
1

which docs not belong to Z.
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Example 6: Let be ** obtained by adjoining all roots
of unity. Its group is then canonically isomorphic (as a
topological group) to the group of units Z* ;3 nr Z;, of Z,

GQIQ) ce i.
This isomorphism is obtained by passing to the projective limit from the
canonical isomorphisms

G@uNQ) = (@/n2)* |

where ,; denotes the group of fl-th roots of unity.

Example 7: The groups ZI' and Z are (additive) <,pecial ca&cs of the class
of procyclic groups. These are prolinite groups G which are topologically
generated by a single element a; i.e., G is the closure (a) of the subgroup
(a) ={a*|« E Z). The open subgroups of a procyclic group C = (@) arc
all of the form G". Indeed, G is closed, being the image of the continuous
map G -+ C. x f> x'. and the quotient group G/G" is finite, because it
contains the finite group \a" mod G" 10 =t v < n) as a dense subgroup,
and is therefore c4ual to it. Conver&cly, if H is a subgroup of CJ of index n,
then G" €11€G and n = (G: H):: (G: G"):::n, sothat H = G™

Every procyclic group G is a quotient of the group Z. nfact, if G = @,
then we have for every n the surjective homomorphism

1,/11Z---+G/G* ImodnZf-'>-amodG**
and in of (2.7), pa€sing to the projective limit yields a continuous
@urjection------- +G.
Example 8: Let A be an ahelian torsion group. Then the Pontryagin dual
X(A) T Hom(A.Q/z)
is a profinite group. For one has

A- LA,

where A, varies over the finite subgroups of A, and thus

XAl = € x(A)

ite groups x(Ai). If for in5tance,

A=0Q/iz = LI Yz;:z,
HEQ1
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then x<%Z/Z) = Z/nZ, o that
x(Q/z) " & 7z eZ.

Example 9: If G is any group and N varies over all normal subgroups of
lInite index, then the profinite group

G = lim G/N
N

is called he prrdmite :ompletion of G.' The profinite completion of Z. for
example, i the group % = lim Z/nZ.
[

Exercise |. Show that, for a protinite group G, the power map G x Z » G.
(a, n) c+ a", extend€ to a continuou€ map

GxZ—>G, (a.a)c-+a”,
and that one ha€p (rTal = o-"* and rr"+! = u"a® 1t G 1¢ abelian.
Exercise 2. If a E:G and a=,0€€4a, E Z with a, € Z. then cr" = Jim a" ism G.
Exercise 3. A fHo-p€group i€ a protinite group G who€c 4uotient€ ( /N. modulo all

open nonnal @uhgroups N. are finite Imitating cxcrci€pe 1, make €ense of
the powers a". for all a EG and a E

Exercise 4. A doSed subgroup H of w1 protinitc group G i€ called a p-Sylow
@ubgroup of G if, for every open normal @ubgroup N of G. the group H N/ N is a
p-Sylow subgroup of G/N. Show:

(i) For every prime number p, there cxish a p-Sy[ow whgroup of G.

(ii) Every pro-p-wbgroup of G 1s contHined in a p-Sylow subgroup

(iii) Every two p-Sylow @ubgroups of G are conjugate.

1<:xercise 5. What i€ the p-Sylow whgroup of 7'. and of Z;?

Exercise 6. If !G,) j\ a projective @ystcm of profinitc groups and G =0 G,

. *
then G'1, = 1lit) ce1, (@ce” 1, excrnée5).
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§ 3. Abstract Galois Theory

Class field theory is the final outcome of a long development of algebraic
number theory the beginning of which was Gauss's reciprocity law

(@) (©H® (-1)9™.

The endeavours to generalize this law finally produced a theory of the abelian
extensions of algebraic and p-adic number fields. These extensions LIK are
classified by certain subgroups .ML= NL,/KAt. of a group Ak attached to
the base field. In the local case, Ak isthe multiplicative group K* and in
the global case it i€y a modification of the ideal cla5S group. At the hean of
this theory there is a mysterious canonical isomorphism

GILIK) = Ax /N A,

which - if we view things in the right way - encapsulates the reciprocity
law in its most general form. Now, this map can be abstracted completely
from the field-theoretic situation and treated on a purely group theoretical
basis. In this way, class field theory can be given an abstract, but elementary
foundation, to which we will now tum.

We begin our considerations by giving ourselves a profinitc group G. The
theory we are about to develop is purely group theoretical in nature. However,
the only application€ we have in mind :Ife field theoretical, and the language
of fleld theory allow€p immediate insights into the group theoretical relations.
We will therefore formally interpret the profinite group G asa Galois group
in the following way. (Let us remark in passing that every profinite group is
indeed the Galois group G = G(kjk) of a Galois field
extension KIk; this will allow the reader to rely on his €tandard knowledge
of Galoi€ theory whenever the formal development in terms of group theory
alone would :-eem odd.)

We denote the closed subgroups of G by (h, and call these indices K
"field@"; K will be called the fixed field of GK. The field k such that G@ =G
is called the base field, and K denotes the field sati:-fying G; = /1). The
field belonging to the closure (@) of the cyclic group (o) = {u' / k E G/
generated by an element u E G is simply called the fixed field of u.

We write formally K <;: L or LI K if GL <;: ek, and we call the pair
/,IK a field extension. LI K i€ called a finite extension, if G L i,;, open, i.e..
of lnite index in GA. , and this index

L:K]:=(Gk:Gy) |





276 Chapter IV. Ah@tnu:t Class Fid<l Theory

will be called the degree of LIK. LIK is<€paid to be normal or Galois if Ch
is a normal wbgroup of GK. If this is the case, we define the Galois group

ofLIKby
HLIKY =G /Gy |

If N 2 L 2 K arc Galois extensions of K, we define the restriction of an
element a E G(NIK) to L by

all= amod G(NIL) E G(LIK).
This gives a homomorphism
G(NIK) —1- G(LIK), @ it 111,

\liith kernel G(NIL). The extension LIK is called cyclic, abclian, solvable,
etc., if the Galois group G(L IK) has these properties. We put

("intersection")

if GK s topologically generated by the rnbgroups GK,, and
K=TIK; (‘compm.ite")

ifek=" N ,GK,- If GK'= a-1GKa fora EG. we write K' = K.

Now let A be a (ontinuous multiplicatin’ G-modulc. By this we mean
a multiplicative abclian group A on which the elements a e G operate as
automorphisms on the right, a : A —+ A, a r+ arl. Thisaction must @atisfy
) a=a
(i) (ah)" =a ha,
(i) a"r = (@"Vv,
(iv) A = Uik:@<cx, AK.

Whtehret AK in the last condition denotes the fixed module Ac;K under GK,
so thal

AK = /a e Ma =o foralla EGK ,
and where K varie€ over all extemions that are finite over k. The
condition (iv) says that G operates continuously on A, i.e., the map

GxA----__ A, (a,a)f----- +t/'.

is i where A is i with the discrete topology. Indeed. thi.-;
continuity b equivalent to the fact that, for every element (a.a) E G x A.
there exist,; an open subgroup U = GK of G such that the neighbourhood
all x {a) of (a, a) is mapped to the open -;ct {a"}, and thi€ means simply
that a" E AC= AK.
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Remark: In the exponential notation a", the operation of G on A appears
as an action on the right. This notation is adequale for many computations
in the case of multiplicative G-modules A. For im,tancc, the nolation
a"-!:=aa-1is to be preferred lo writing (a - ha = aa -a-'. On the
other hand, cla5sical usage often calls for an operation on the left. Thus in the
case of a Galois extension LIK of actual fields, the Galois group G(LIK)
acts as the automorphism group on L from the left, and therefore all'o in the
same way on the multiplicative group L*. This occasional switch from the left
to the right 1'hould not confu<;e the reader.

For every extension LIK we have AK £" At., and if LIK i1’ finite, then
we have the norm map
NL1K: AL--+ AK, N,_K(a) =lla",
where « varies over a sy€tem of representatives of G L\Gk- If LI K is Galoil',
then AL i< @ G(LIK)-modulc and one has
ALfIKI=  AK
At the center of clal'l' field theory there is the norm residue grnup
Y(G(LIK), Ar) = Ak /Npk A
We also consider the group
HTHGLIK). AL) = o AL/IgwinAr
Where
NLKAL = ja EAL IN1 1K) = I}

is the "norm-one group” and h;(LiK)AL il1' the subgroup of Nik AL which is
generated by al | element€

aa-1 1=a"a
with a E A1_, and » E G(LIK). If G(LIK) is cyclic and a is a generator,
is simply the group
A@-l = /aa-tlaE AL) .

In fact, the formal identity as.:- 1= (1+a-+-- +at-!)(a -1) implies
arr' *= h". ' with h= TI@@(a™",

Let us now apply the notions introduced so far to the example of Kummer
theory. For this, we impose on the G-modulc A the following axiomatic
condition.
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(3.1) Axiom. One fois H-Y(G(LIK),AJ = | for al/ finite cyclic
exlcnsions LI K.

The theory we are about to develop makes reference to a surjective
G-homomorphism
6% Aeeeees ) A, ai—r+aS,

with finite cyclic kernel .e- The order n = is called the exponent of
the operator The ca€pe of prime interest to uz;.  when g-1 is the n-lh power
and s, = w11 ={€ E Al $1' = I} is the group of "11-th roots

We now fix a field K such that 11.ei £ AK. For every subset B s; /\
let K (B) denote the fixed field of the closed subgroup

HelaEGK|h hfo al hEB}

of GK. If 8 is GK-invariant, then K(B)IK is obviously Galoi:;.. A Kummer
extension (with respect to g-;) is by definition an extension of the form

K(p M) IK,

where .1 s; AK. A Kummer extenciion K(p-'(.1))1K is always Galois,
and its Galois group is abelian of exponent n. Indeed, for an extension
K (p-'(a))IK, we have the injective homomorphism

G{K(S:J-1@)IK) " LL;;,, @ i

—+ arr-1

where a E (rl(a). Since /.Lg., £;; AK, this definition does not depend
on the choice of a. Thu-. for a Kummer extension L = K(p-i(LI)) =
TTatd K(p-*(a)). thecomposite map

k) - Noeke-@mw- It
is an injective homomorphi€m.

The following proposition say€p that conversely, any abelian extension
LIK of exponent n isa Kummer extension.

(3.2) Proposition. 1f LIK is an abclian extemion of exponent n, then
L=K(p H&) with A= A7 nAax]

/fin p,micular. LIK is cyclic, then we find L = K(a) with as,>=a E AK.
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Proof: We havep-1(,1) <z AL for if x EA and =aii’ = aE AK,
a E AL, then x = iia E AL for some i; E . < AK  Therefore

K(p-*(L1)) < L. On the other hand, the extension LIK is the composite of
it5 cyclic subcxtensions. For it is the composite of its finite subextensions,
and the Galoi5 group of a finite subextension is the product of cyclic
groups, which may be interpreted as Galois group5 of cyclic @ubextemions.
Letnow MI K be a cyclic 5Ubextension of LI K. It suffices to show that
M < K(tJ-1(,1)). Leta be a generator of C(MIK) and ( a generator

Letd =[M: KJ, = n/d andi; = (d"_ Since NM1K(i;}) =id = |,
<,hows that i; = for some a E AM. Thus K £ K(a) <i; M.
But a™ = jjia. Thus a” = a is equivalent to i = 0 mod d, 50 that
K@) = M. But (a@))al = (@"-)t' =il? = |, @o that a= a€* & AK; then
a EtJ-}(L1), and therefore M £ K(fl-1(L1)). 0

As the main result of general Kummer theory, we now obtain the following

(3.3) Theorem. The correspondence
LI, LOK(@{? (L)

is a I-I-correspondence between the groups LI 1,uch that Ar £ L1
the abelian extensions LI K of exponent n.

if L1 and L correspond to each other, then A AK = LI, and we have <i
canonical isomorphism

AK and

LI/Af ;,: Hom(G(LIK),JIs,)), amod Ai i+ Xa,
where the chanl.cter x,, : G(LIK)-+ w is given by x“(a) = a"-*, for
uE fl *(a).
Proof': Let LIK be an abelian extension of exponent n. By (3.2), we then
findL= K(p-l(Ll)) with L1 =Arn AKW. e consider the homomorphism
Ll----+ Hom(C(LIK),up1). a i—+ Xa,

where Xa(a) = 1 aep-*(a). Since

Xa=1 ¢ a™ '=1 forall a e G(LIK)

{=} aEAK {3 a=alf EA@,
it has the kernel A€. To prove the surjectivity, we let X e Hom(G(LIK), /ip),
X defines a cyclic extension MI K and is the composite of homomorphisms
G(LIK)-+ G(MIK) L ni;i- Let a be a generator of G(MIK). Since
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NMid.f(a)) = .f(a)IM.KI = 1, we deduce from (3.1) that X(a) = arr-I for
some a E AM- Now, (at)" -I= (a"-H)&" = X(a)!P = I, sothata= aP E
Arn AK =LI.Farr EG(LIK).oneha<;x(-r)= X(<IM) =ar-1 =X"('r),

sothat X = X". This proves the surjectivity, and we obtain an isomorphism

1/AY = Hom(GWIK). pp) -

If .1 is any group between and and if L = K(g.)-'(6.)), then
1 = Af N ak. Infact, putting n AK, we have ju<;t seen that one
has

LI'YAf ¢ Hom(G(LIK)./<,)

The subgroup /1/ A€ corre:-ponds under Pontryagin duality to the subgroup
Hom(G(LIK)/H /lg,,), where

H@\aeG(LIK)Ix,(a)€! fmallaELlj.

As r./' ' = Xa(a) for a e tri-}(a), H leaves fixed the clements
of sri(Ll). and a<; K(t-)-(.1)) = L. we find that JI = I, so that
H?m\U<@IK)/H,11,,6") = Hom(G(LIK),up). It follows that LVAt =
A /AK, 1e, 1 = 1

It i<; therefore clear that the corre€pondence LI r-+ L = K(p-1(11)) i,
a 1-1-corre<;pondence, as claimed. This finishes the proof of the theorem. D

Remarks and Examples: 1) If LIK is infinite. then Hom(G(LIK),/Lp)
has to be interpreted a<; the group of all continuous homomorphisms
x: G(LIK)----+ Jls,, i.e., as the character group of the topoloiiwl group
G(LIK).

2) The composite of two abelian extem,ions of K of exponent n i€ again
of the @ame type, and all of them lie in the maximal abelian extension of
exponent n. It is given by K=k (0-1(AK)), and for the Pontryagin dual

G(KIK)' € Hom(G(KIK).{()/Z) € Hom(G(KIKJ.p,,)
we have by (3.3) that . X
GRIK) = Ag/AY

3) Ifkb anactual field of positive characteristic p and f i€ the separable closure
of k, then A may be chosen to be the additive group k and ¢ to be lhe
operator

p:k----+k, at-----*fila=al'-a.

Then axiom (3.1) is indeed satisfied, for we have. in complete generality:
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(3.4) Proposition. For every cyclic finite field extension LIK, one has
H-"(G(LIK), L) & I.

Proof: The extemion L IK always admits a normal basis {ac la E G(L 1K)},
sothat L = ffi,,. Koc. This means that Lis a C(LIK)-induced module in
the sen:-e of *7, and then H—l(G(LIK), L) = 1, by (7.4). 0

The Kummer theory with respect to the operator pa = afi - a is usually
called Artin-Schreier theory.

4) The chief application of the theory developed above is to the case where G
i<; the absolute Galois group G(klk) of an actual field k, A is the multiplicative
group k* of the algebraic closure, and 5.J is then-th power map a m a*, for
some natural number n which is relatively prime to the characteristic of A.

(in particular, n is arbitrary if char(k) = 0). Axiom (3.1) is always satisfied

in this ca:-c and is called Hilbert 90 because thi:- statement occurs as Sat::
number 90 among the 169 theorems in Hilbert's famow, "Zahlbcricht™ f72J.

Thus we have the

(3.5) Theorem (Hilbert 90). For a cyclic licld extension LIK one always
has

W'(G(LIK),C) @ I.
In other wordh,

An element a £ L* of n0lm NLiK (a) = 1is of the [0lIm a = /3"-L
where f3EL® and a i.€ agenera/or ofG(LIK).

Proof: Let11= IL: K]. Ry virtue of the linear independence of the automor-
phisms I, a, ....an* (sec [151, chap.5 §7, no.5), there exists an element
y E L= such that

f3=y+ay"+al.,.. -=/=0.

+al+, +ot)2y
As N1.w(a) = I, one gets a/3" = /3, and thw, a= /31", ol
If now the field K contains the group fin of n-th roots of unity, the

operator f)(@) = an has exponent n, and we obtain the following corollary,
which i€ the most important special case of theorem (3.3).
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(3.6) Corollary. Letn be a natural number which is relatively prime to the
characten\,tic of/he field K, and a<,sume that p,,, £ K.

Then the abe/ian extem,ions LIK of exponent n correspond 1-1 to the
subgroups LI S; K* which contain K**, via the rule

Vv L=K(VA),
and we have
F(LIK) = Hom(A/K™. tin).

Hilbert's theorem 90, which is the main basi:;. ofthi€ corollary. admits the
following generalization to arbitrary Galois exten<;ions LI K, which goe:c. back
to the mathematician emmy noeTnf.R (1882-1935). Let G be a finite group
and A a multiplicative G-module. A 1-cocycle, or crossed homomorphism.
of G with valuesin Ai>a function f : G -+ A satbfying

f(a,) @f@'f()
foarll rr,r € c.;. The 1-cocycles form an abelian group Z1(G, A). For every
a E /\ the function
fulo) = a” |
is a 1-cocycle, for one has
J;,(aT) =ac" 1 = (aa-hrar-1 = fa(aVvfa(T).

The function:- fa are called 1-coboundaries and form a subgroup B*(G, A)
of ZY(G, A). We define

H'(G. A)@ Z'(G, A)/B'(G. A)

and obtain as a first result about thi<; group the
(3.7) Proposition. IfG is cyclic, then H Y(G. A) @ f/-}(G, A).
Proof: Let G = (a). If f E Z(G. A), then fork 21 1
1At
f(a) & f(@ )"/(2)@ f(ak-2)" f(@)" /()@ .. = n f@)™.
=0
and f(1) = | because f(1) = /(1)f(l). If n = #G, then

Nc;f(a) ouﬁl f(a)" & f(a") @ f() &1,
=0
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so that f(a) E NGA ={a E Al Nr;a =rr=riaa’ = 1}. Conversely we
obtain, foreverya E A such that Nc;a = I, a 1-cocycle by putting f (0) =a

and "y

f(ok) = aa'

=0

The reader is invited to check this. The map f r+ f(u) therefore i5an isomorphism
between Z(G, A) and N(,A. This isomorphism maps BY(G, A) onto le A,
because f E 8'(G.A)< > f(al..) = a"'-1 for some fixed a
f(a) =aa ! <=} f'(a) E /O1\ D

Noclher's generalization of Hilbert's theorem 90 now reads:

(3.8) Proposition. For a finite G,itois field extension LIK, one has that
HY(G(LIK)L) @1

Proof: Let f: G--)- L* be a 1-cocyde. For ¢ EL*, we put
ae L f(a)c"
a<c.GU-IK)
Since the automorphisms a are linearly independent (see rt5], chap. 5, 87, no.
5), we can chom,e ¢ E L* such that a f. 0. For r E G(L IK), we obtain
a=  L,f(ar:c™ = L,f(r)-tfur)c'r = f(r)-ta..

ie., f(r) = W-lwith /3 =a-* &}

This proposition will only be applied once in thi5 book (see chap. VI.
25)).

Exercise 1. Show that Hilbert 90 in Nocthcr's fonnulation al€o hokb for the additive
group L of a Galo1€ extension LIK.
Hint: U5e the normal basi€ theorem.
Exercise 2. Let A. be a field of char<lctcristic fl and | its separable dosure. For fixed
n c". 1, comlder rn the ring of Witt vectors W(K°) (€ee chap. I, IH, exercise 2--6) the
additive group W,.(k) of truncated Wilt vectorp = (ao.al, .. ,an-1). Show th.it
axiom CU) holds for the G(klk)-module A=
Exercise 3. Show that the operator

p:W,,(K)=W,,(kl, pa=Fa-a,
i.-, @ homomorphism with cyclil: kernel p,, of order p". Di@cu€€ the corre€ponding
Kummer theory for the abelian extension€y of exponent p".
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Exercise 4. Let G he a profinite group and A a rnntinuou€ G-module. Put
H1(G. A)= ZY(G.A)/B\G, A),

where Z1(G, A) con@ists; of all contmuom;

dis;cretc topology on A) such that

al! functions ot the foml

@uhgroup of G, then one  an exact sc4uence

S HYGJg AD — HY(G. A — (g A).
= lig H'(G/N,AY), where N varies over all

+ A L

1 G--
(o) j 1), ana 5'(G. A) consists of
. Show that if g is a closed normal

Exercise 5. Show that
the open normal subgroups

Exercise 6. If | —+ A —+ B —+ C —+ 1 is an exact @equcnce of c:ontinuous
G-modulc€p. then one has an exact sequence

l-==+ A(;=--+ B''--+ Cu--—+ H(G,A)---+H(G,B) » H(G,C).
Remark: The 1/1(G, A) i€ only the tirs;t term of a whole €cries; of group€

H(G. Al = ., Which arc the ohjcch of group cohomolog_v {see 1145]).
Class field theory can al€o be built upon this theory (€ee 110J, 1108ijl.

Exercise 7. Even for infinite Galois exten€ion€ L IK, one ha€ Hilbert\ theorem 90:
I(G(LIK)..*) = |

Exercise 8. If n is not divisible by the characteristic of the field K and 1f mn denotes
the group of n-lh roots of unity in the @cparabk clowre K. then

ALGK. ) @ KIK*".

§ 4. Abstract Valuation Theory

The further development will now be based on a lixed choice of a
surjective continuous homomorphism

from the profinite group G omo the procyclic group Z= On ZInZ (see
§2, example 4). Thi€ homomorphism will produce a theory which i€ an
abstract reflection of the ramification theory of p-adic number ticlds. Indeed,

in the ea,;e where G is the absolute Galois group G€ = G(klk) of a p-adic
number field k, such a wrjective homomorphbm d : G -+ Z arises via the
maximal unramilled extension kIk: i,; the residue class field of K. then,
by chap. 11, §9. p. 173 and example 5 in we have canonical isomorphi€ms

Gkl ;, GIW,W,);, ?'
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which associate to the element | E i the Frobenius automorphism
¢ € G(k|k). It is defincd by

aP =almodpP for aE I,

where(), re€p. P, denote the valuation ring of k, resp. its maximal ideal. The

homomorphi&m d : G -+ S; in question i5 then given, in this concrete cagpe.
as the compobite N
G — Gl = 7|

In the abstract situation, the initial choice of a surjective homomorphism
d:G —+ 2 mimics the p-adic case, but the applications of the theory are by
no means confined to IJ-adic number fieldS. The kernel / has a certain
fixed field klk, and d induces an i€omorphism G(klk) €

More generally, for any field K we denote by /k the kernel of the
restriction d: GK-—+ I, and call it the inertia group over K. Since

fK=GKnI=GKnNGr=GK]I,
the fixed field K of 1K i€ the composite
K €Kk.
We call ilK  the maximal unramified extension of K. We put
(K ©(Zcd(GKI). 'K €( c/K)

and obtain, when fK i5 finite, a surjective homomorphbm

with kernel /k, and an irnmorphism

dK: G(izIK) ....

(4.1) Definition. The element ({{K E G(f<IK) such that dd({!K) = I is
called the Frobenius over K

For a field extcn&ion LI K we define the inertia degree .hw and the
ramification index N 1k by

fi.lKk = (d(GK): d(Gd) and I'LiK =UK: /i).
For a tower of field@ K £; L £; M thi& definition obviou@ly implies that

f"IvL,K = hiK fMIL and eViK = Cf K eMIL.
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(4.2) Proposition. For every extension LIK we have the "fund,imental
identity”

[L: KJ = /LK CLIK -

Proof: The exact commutative diagram

| — Ix —— Gx —— d(Gg) — 1]

immediately yield<;, if LIK is Galob, the exact sequence
I---; h/IL--—-; G(LIK)----; d(GK)/d(G1)----; |
If LIK is not Galois, we pass to a Galois extension MIK containing L, and

get the result from the above transitivity rules fore and f. o
LIK b called unramified if e.K = I, ie, if L <; 1. LK is called
totally ramified if fLIK = I, i, if L n K = K. In the unramified case, we

have the :;.urjective homomorphism
G(KIK) - G(LIK)
and, if ik < oo, we call the image <fJLIK ofhk the Frobenius automorphism
of LIK.
For an arbitrary extem,ion LIK one has
| eLK.

since Li = LKk = Lk = L, and L n fIK is the maximal unrami!lCd
subexlcnsion of LIK. It clearly has degree

hiK@fLnK,KI.
Equally obvious is the

(4.3) Proposition. 1f fK and fr are finite, then hik = .fL/fK, and we
have the commutative diagram

GL _d, , zZ
1 Ib
o ¢ i

In p:ifiicular, one has (ov.lR =
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The Frobenius automorphism governs the entire class field theory like
a king. It is therefore mo&I remarkable that in Ihe case of a finite Galois
extension LI K, every a £ G (LI K) becomes a Frobenius automorphism once
it is manceuvered into the right position. This is achieved in the following
manner. For what follows, let us assume systematically that Ji< < oo
We pas:;, from the Galois extension LIK to the extension LIK and consider
in Ihe Galois group G(LIK) Ihe semigroup

Frab(LIK) € {a £ G(LIK) | dk(a) EN}.

Observe here that dK : GK ------ + Z factorizes through G(LIK) because
Gr.=h c;h ;recall also that O f:. N. Firstly. we have the

(4.4) Proposition. For a finite Galois extemion LIK the mapping
Frob(T.IK)----—+ G(LIK), a 1 alt,

@ surjective.

Proof: Let a E G(LIK) and let rp E G(T.IK) be an element such that
th(rp) = I. Then 'PIK = ((K and rplLnR = 'Pu,RiK- Restricting a to the

maximal unramified subexten:.ion L n KI K, it becomes a power of the
Frobenius automorphism, aluiR = rp€'.niiK' so we may choose n in N. As
L =LK, we have

G(LIK) "™G(LIL N K).

If now r £ G(lli<) is mapped to arp n IL under this isomorphism, then
if= is an element satbfying iJIr. = rrpniL = arp-**rpnll = a and
alR= Hence dK(ii) = 11, and so & E Frob(lIK). O

Thus every element a E G(LIK) may be lifted to an clement
a e Frob(Z IK ). The following proposition :;.hows that this lifting, com,idered
over its fixed field, is actually the Frobcnius automorphism.

(4.5) Proposition. Let ii E Frob(ZJK), and let E be the fixed field of a-.
Then we h:we:

(i) frik=dk(o), (ii)) fE:KJ<oo, (iii) f=L, (iv) 0=7JE-
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Proof: (i) 3: N K i the fixed field of IR = so that
frik = IE N K: K1 = dk(0).
(i) One hal- K <;;:;EK= E <;; Lt thus
<EIK = (h: IN=#G(EiK) 1= #G(il'i)

is finite. Therefore [L: K] = frikCEiK is finite as well.

(iii) The canonical surjcction I'=  G(LIE)---—+ G(fIE) € Z has to he
bijective. For 1-incc I = {al is procyclic. one finds (I' : n for every
n EN(l-ee§2. Thus the induced maps I'/ I'* bijective

and 1-0 is r----+ But G(LIE) = G(EIE) implies that =
(iv) friKdr;(O") = {h(O) = fEIK; thul- dr(0) = I, and so a= rp1,-. [m]

Let usillustrate the <;ituation described in the last propol-ition by a diagram,
which one should keep in mind for the sequel.

All the preceding discul-sion5 arose entirely from the initial datum of the
homomorphism d : G ----+ Z. We now add to the data a multiplicative G-
module A, which we equip with a homomorphism that i1- to play the role of
ahenselian valuation.

(4.6) Definition. A henselian valuation of A€ with re,._pec/ to d: G----+ Zis
a homomorphism

v Akt
.@atisfying the following properties:
(i) V(Ad = Z 2 Zand Z/nZ € Z/n?l forall n EN,
(i) V(N KIQAK) = .fKZ for all finite extem,ion€ K Ik.

Exactly like the original homomorphi"m d : G1. ----+ i, the henselian
valuation v : Ak » 2 has the property of reproducing itself over every finite
extension K of k.
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(4.7) Proposition. For every field K wilich is finite over k, the formula

defines a @urjective homomorphism satisfying the following propertie €:
(i) VK = ke oa foral/la EG.

(i) For every finite extemion LI K, one has the commutative diagram

AL Q A
1 Ih"

AK @Z -

Proof: (i) If 1 run:- through a sy@tem of representatives of G€/GK, then

a-'ra <;weep€ acros€ a system of representatives of Uda-'GKa =
G @/GKar Hence we have, fora E AK,

vk-@)e _|_V(TTaaa-'w) @ _|_v((TTa")") € _L v(NK (@)
/Ka K r K
= VK().

(ii) For a E AL one has:
| |
ft.ikvL(a) = fL Ky;_v(NL1!Ca)) = y;i,(NK dN,.1da))}

= VK(NL1da)) D

(4.8) Definition. A prime element of AK is an element HK £ AK .@uch th:it
VK(@1TK) =1.We put

Ug = [u e Ag | vc(n =0}

For an unramilicd exlension LIK, that is, an extension such that
fL « =IL: K],we have from (4.7), (ii) that vLiak = vk, In particular. a
prime clement of Ak is itself also a prime element of AL, If on the other
hand, LIK is totally ramified, i.e., fLik =1, and if 1TL ha prime clement
of AL, then 1Tk = N,.1K(rr,) is a prime element of Ak,





290 Chapter IV. Ahstract Clm,€ Field Theory

Exercise |. Assume that every closed abelian suhgroup of G is procyclic Let K Ik
be a fimte extension. A microprime p of K is by definition a conJugacy @€
\u) € ok of some Frobenius element u € Frob(kIK) which i€ not a proper power
um, 11 > 1, of some other Froheniu€ element a' £ Frob([ IK). Let @pc<.:(K) he the
set of all microprimes of K. Show that 1f LIK s a finite extension, then there i€ a
canonical mapping

:r: spee(L) » @rec(K).
Ahove any mlcropnmc p there are only finitely many mieroprime\ € of L. i.e., the
setsr-}(p) is finite. We write €@IP to mean€ e x (p).
Exercise 2. For a finite exten€ion LIK and a mieropnmc €IP of L, let
n.11p = d(€)/d(p). Show that

Exercise 3. For an infinite exten€ion L IK, let
©ree(L) = 1i_t!! @pee(L.),

L"IK vane€p over the finite subextensions of L]K. Whal are the mleroprime€

Exercise 4. Show that 1f LIK i€ Galoi€. then the Galoi€ group G([,IK) operate@
tran@itlvely on spce(L). The "decomposition group™
G,u(LIK) = (ae G(LIK) IW =@l
and if z13= L(.,,pi/IKI is the "dc<.:0mpo€1tion field" of@ E @pec(L), then
is unramified.

§5. The Reciprocity Map

Continuing with the nolation of the previous section, we consider again a
profinite group G, a continuous G -module A, and a pair of homomorphisms

6 G+ Z, v Al--+ Z.

such that d is continuous and surjeclivc and v is a henselian valuation with
respect to d. In the following we introduce the convention that the letter K,
whenever it occurs without embellishment€y or commentary to the contrary, will
alway€ denote a field offinite degree over k. We furthermore impose the
following axiomatic condition, which will be systematically a%umed in Ihc
sequel.

(5.1) Axiom. For every unrnmitied finite extension LIK one has

H'(G(LIK),U,)@1 foe ;@o0,-1,
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For an infinite extension LIK we set

NL1KAL = nNM1KAM,

with MIK varying over the finite suhextensions of LIK.

Our goal is to define a canonical homomorphism
1K : G(LIK)----- + AK /NLIK At,
forevery finite Galois extension LIK. To this end, we pass from /, IK to the
extension | 1K and define firsta mapping on the semigroup
Frnb(L[K) € {a E G(L[K) | dK(a) EN}.

(5.2) Definition. The reciprocity map
rlik: Frob(L1K)----- + AK/N[; KA
ir.defined by
rig (o) =Ny (re) mod NpxAps
where E i, the fixed field of a and 7r& E AE is .1 prime element.

Observe that E is of finite degree over K by (4.5), and a becomes the
Frobenius automorphism PE over E. The definition of rl k() does not
depend on the choice of the clement 7re, For another one differs from 7
only by an element u E ur;, and for this we have NrjIK(u.) E N[;KA[
so that Nr:1K(u.) E Nmikam for every finite Galois suhextension MIK
of 11K. To see this, we may dearly m,sume that E € M. Applying (5.1) to
the unramificd extension MIE, one findl, u. = NM1r:(t:), 1:- E U1,1, and thus

Nr:1du) = Nr:1K(NM1r:(e)) = NM1df') E NMiKAM.
Next we want to show that the reciprocity map 11,K is multiplicative. To do
this, we con@iderfor every a E G(LIK) and every n E N the endomorphisms

o —1: Af Ap a r—-gcr-1 =cr/a,

opt Aj —> Ap. Qo acr” = TTracr‘
0

_j'l. and we find that

(@ - 1)Jan=ano(a - ) =a- |

In fonnal notation, this gives an =

Now we introduce the homomorphism

N = Nr.1K.: Ar. -+ AK
and prove two lemmas for it.
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(5.3) Lemma. Let'P, a E Frob(LI K) with dK (({)) = I, dK(a) = n.I1f E is
the fixed field of aand aE Ar, then

Vrik(a) = (N o gn)(@) = {gs o N)(a).

Proof: The maximal unramified subextension E° = ENK IK is of degree 11,
and its Galois group G(E®1K) js generated by the Frobenius automorphi<;m
iflrolK = iflKI1:11 = 'PIKIrn ='Piro.Consequently, = IfynlAro- On
the other hand, one has EK =1 and £ n K = and therefore
NEIE11 =NIA,,- For a E Ar we thus get

N:r:1da) = Nrn,K(NrlE11(a)) = N(a)<P" = N(a<P").
The Ja,;t equation follows from tpG(i |K) = GCLIR)ip. [m}
The subgroup /¢ gtz » Which is generated by all elements of the

fonnu',uE  J;. v € G(L|K), is mapped to | by the homomorphism
N = NL1R: Ur---+Ug. We therefore obtain an induced homomorphism

N:  Ho(G(liK).Vr) -+ UR
on the quotient group Ho(G(lli<). Ur) = ULf /G(liRiU[- For this group, we
have the following lemma.

(5.4) Lemma. Ifx E Ho(G(lli<), U[) is fixed by an element ,;p E G(LIK)
such rhatdK(<{") = I, i.e.,.t'f" =x, then

Nx) e NpwUp |

Proof: Let x = u mod /G(TiKiU[, with ,ii,o-1 = 1, sothat

* u<P '=hue-" u, EU[, r, EG(LIi).

=1
Let MI K be a finite Galois subcxtension of LIK. Inorder to prove that
N(u) E NMKUM, we may assume that uu, E UM and L €& M. Let
n=[M:KJ].a=ipn and let E 2 M be the fixed Held of a. Further,
let E,IL be the unramified extension of degree n. i.e.. the fixed field of
a" =({)'};,By (5.1), we can then find element5 {i, il, E UE,, such that

u=Ng,s@ =i” u,:Nz,,\z(ﬁy):ﬁ,“”I
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By (*), the element€ fitf- and TT, ii@' 1 only differ by an element X € U

such that = I. Hence - again by (5.1) - they differ by an element
of the form with _ye U[, - We may thus write
[I'P-1= y<t1nu rl = (y'fy<p-1 T TFi ro1
1 1

Applying N gives N(ii)f-1 = N(_)"I'=)'f-1, so that

N(i))=N(_y<P/1) z,

for ome :: E UR such that ;:<P 1= |; therefore = ::. and z E UK. Finally,
applying a,. and putting y = Y™ = Nr,1EU) E UE, we obtain, obScrving
n =IM: Kland using (5.3), that
N(U) = N@ii)™ = NQVI)™z = Ny<P,
= NE1K(y)NI,F1K(z) E NM1KVM, [m]

(5.5) Proposition. The reciprocity map
rLIK: Frob(LIK)---—+ AK/NLWAL

is multiplicative.

Proof: Let ata2 = a3 be an equation in Frob(LIK), n, = dK(a,), L, the
fixed field of a; and rr, E AL, a prime c\cmcnl. for i = I. 2. 3. We have to
show that

Nr,1IK(rri)NE,1K(rr2) = NE,1K(rr3) mod NI1KA[
Choo5c a fixed 'PE G(LIK) such that dK((f)) = I and put
r, =a--'o E G(LIR).
From ataz = a3 and 111 + n2 =113, we then deduce that

n=05'o; [CPEISE

g = “{“P”Z(W 201 W”I

PULtinG as = gy, 1 = dKO-4) =m. 10 = E(7 110 = np” e Agg
and rs = o7 'g", we find r, = r2r-1and

Nzx(m) = Ny jx ().

We may therefore pass to the congruence





Ny & 01) = Ny (70) N sy i (723) mod Ny A]
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the proof of uses the identity T, = rr--1. From (5.3), we have
Nr,1K(rr,) = Thus, if we put

ey ey v
=7y imy

then the congruence amounts simply to the relation N(u) E N[;KA[, For
this, however. lemma (5.4) gives us all that we need. 1
Sinceifin, o (tp- 1) = i:pn, - land rr;," L1 =miT p "—1=1rr,r,-l, we have

Tl il
W =l g I

From the identity T1 = 7274, it follow5 that (3 - 1)+ (1 - 12 + (1 - T4 =
(1 - 72)(1 - T-1)- Putting now

T3 = usme. M2 =M Ma. Wyl =uamy, U, E U,

we obtain .
uf-1 = I Iu;--l.
1=2

For the element x = u mod Iu(LIR)UI E Ho(G(lli<). Ur), this mcam that
x'P-*=1,and sox<P = x; then by (5.4), we do get N(u) = N(x) E

From the surjectivity of the mapping
Frob(i:IK) - G(LIK)

and the fact that NrwAL S; NL1KAL, wc now have the

(5.6) Proposition. For every Jinitc Galois extension LIK, there is a
canonical homomorphism

rek c GLIK) — A /Npix Aw

given by
rL1K(u) = N1:1drrr) mod Ni iK At,





where Eis the fixed field ofa preimage a- £ Frob([jK) ofa E G(L IK) mid
rrr E Ar is a prime element. It is called the reciprocity homomorphism
ofLIK.
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Proof: We first show thal the definition of r1.K(a) is independent of the
choice of the preimage a E Frob(LIK) of a. For thi€. let a-' £ Frob(LIK)
be another preimage, L' its fixed field and 7r." E Az a prime clement.
IfdK(fi) = dK(6%. lhen &IK = &1K and Ult.= &'IL, so that fr= 5
and there is nothing to show. However, if we have, say, dk(ff) <

then a-'= &f for some f E Frob(LIK), and fIL = 1. The lixed field
off contain@ L, so = N:r;,,1K(nze,) = | mod NLIK AL. It followey
therefore that = 1 K@)r[1K() = rz:1K(&).

The fact that the mappi€ is a homomorphism now follow€ directly
from (5.5): if 5,52 E Frob(LIK) are preimages of a;,a, E G(LIK), then

ffi = ff1ff2 is a preimage of ... = aia2. o

The definition of the reciprocity map cxprcssc€p the fundamental principle
of clas€ field theory to the effect that Frobenius automorphisms correspond
to prime clements: the element er= rpr; E GilL) is map_ped to if.” E Ar
for reasons of functoriality, the inclusion G(LIL) -+ G (LIK) corresponds
to the norm map NriK: A+ AK, So the definition of riiK(er) is already
forced upon us by these requirements. This principle appears at its purest in
the

(5.7) Proposition. If LjK i.€ an unramified extension, /hen the reciprocity
map
rrik P GLIK) ~> Ak /Ny ik Af
is given by
rLik (prik) =7k mod Nk Ag |
and is an isomorphism.

Proof: In this case one has | =Kand PK E G(i<IK) b a prcimage of
'PLIK with fixed field K, i.e., I"LIK('Pt.1K) = Ifk mod NL1KAL- The fact that
we have an isomorphism is seen from the composite

G(LIK)---=-,)- AK/NLIKAL------)- Z/nZ € "IL/n'll.,
with n = [/, : K], where the @econd map is induced hy the valuation

VK @ AK eee + Z because ;i nZ. I is an isomorphism, for
if vk(@ = 0mod nZ. then a= and 5incc u = NLIK(t) for €ome
FE uL, by (5.1), we find a= =1 mod N,_jKAJ.. On the side of
the homomorphisms, the generators 'PL K, nK mo<| NLIK AL. and | mod nZ
correspond to each other, and everything is proved. D

The reciprocity homomorphism rt.ik exhibits the following functorial
behaviour.
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(5.8) Proposition. Let LIK and L'IK' be finite Galois extensions. so that
Kc; K'andL c; L'.andlcta E G. Then wchavethecommutativediagrams

GILIK') L»AK//NT,«AL/ GUIK) — s Ax/Npx AL
) ‘ «
G(LIK) € AK/NLIKAL G(L"IKI) € AK"/NU'IKaAL:

where the vertical arrow.<, on the left are given by a' r+ a'IL, resp. by the
conjugation r r+ a ‘ra.

Proof: Let a' E G(L'IK") and a= a'lL E G(LIK). If a' E Frob(I'K")
is a preimage of a'. then &= O'I[ E Frob(LIK) i<;a preimage of a such
that dk(l) = fr, EN. Let E' be the fixed field of 8- Then
E=EnL@&En the lixed field of a- and h:'lr = I. If now
mp E Ar- i> a prime element of E', then rrr = Nru;(rrr) E Ar: is a
prime elemenl of E. The commutativity of the diagram on the left therefore
follows from the equality of nonns

NFIK(rrx;) = NriK(N.rIr(rx;e)) = Nxgew(rmm,) = NKIK(NE'TK'(rrp))

On the other hand, let r E G(LIK), and let f be a preimage in Frob(i:'IK)
with fixed field E, and f E G a lifting of f to K. Then E° is the fixed
field of a-*fal[", and ifrr E Arb a prime element of E, thenrr" E Ap
i€ a prime elemenl of E/J. The commutativity of the diagram on the right
therefore follows from the equality of norms

Nyogo (17) = Nzix (1)7 ] [m}

Another very interesting funetorial property of the reciprocity map is obtained
via the transfer (Verlaw'rtin[; in Gennan). For an arbitrary group G, letG'
denote the commutator <;ubgroup and write

G = GG

for the maximal abelian quotient group. If then H C; G b a subgroup of
finite index, we havea canonical homomorphism

Ver: cah-----+ H™,

which iscalled transfer from G to 1-1. This homomorphi@m is defined as
follows; (see [751, chap. IV, € ).
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Let R be a system of representative:- for the left cosets of H in G,
G = RH, | ER. Ifa E G we write, for every p ER.
ap = pap. ap EH. p' ER,
and we define
Ver(a mod C') = fl ap mod H.
p<cR

Another description of the transfer results from the double co5ct dccompo €pi-
tion
G @ LJ@rH

of G in terms of the subgroups (a) and H. Letting /(r) denote the smallest
natural number @uch thataT = r-Laf{rir E H, one has H n(r-lar) = (err),
and we find that

Ver(a mod G') = fl aT mod H.

This formula is obtained from the one above by choo€ing for R the set
{arli= L, /(r)}. Applying this to the reciprocity homomorphism

rLIK: G(LIKf't,------ + AK/NL1KA1

we get the

(5.9) Proposition. Let LIK be a finite Galois extension and K' an
intermediate field. Then we have the commutative di;_igmm

G(LIK'ft, AK/NE,1K:AL

n r

G(LIK)"/, & AK/NLIKAL,

where the arrow on the right is induced by inclw,ion.

Proof: Let us write temporarily G = G(LIK) and H = G(LIK'). Let
a E G(LIK). and let O be a prcimage in Frob(Z'IK) with fixed field E
and S = G(LIE) = 0). We con<,ider the double coset decomposition
G = LJSrH and put ST= r-1Sr n Hand 8-r = r-lat(rlr asabove. Let

G=G(LIK). H=GW|K), S=(o). T=r1|, and o, =&;|;
Then we obviously have
G=L)§7H,
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and therefore

Ver(a mod G(LIK)Y) o B — G(LIKY

Forevery r. letw, vary overa sy€tem of right co:-.ct representatives of H /S,.
Then one has
and G =

Let Er be the fixed field of a-,, i.e., the fixed field of S,. rr is the fixed
field of r-*ur so that Er IE' is the unramified subextension of degree f(r)
in/,1IE'. If now n E A_r isa prime element of E, then:rr' e Azr fr, a
prime element of .E’, and thus also of .E,. In view of the above double cosct
decomposition, we therefore find

Ne:1K(rr) € }J 110, W, € 9(D(rr')"™) €9 Nr,1K'(rr).

and since @, E Froh(Z'IK") is a preimage of a, £ G(L IK"), it follows that

rLlda) =nrLIK'(a,) =r1lK'(fla,) =r1!K'(Yer(a mod G(LIK)").
. ' D

Exerci<,e 1. Let /. K he ahelian and totally ramified. and let ot be a prime ck:mcnt
of AL. If then a E G(LIK) and

with y e:Ur., then = N(y) mod N11KA7, where N = NrR (B.D1toRK, €ee
[122], chap. XII,

Exercise 2. Generalue the theory developed so far m the ing way. Let P he
aset of prime number€ and let G be a pru-P-group, i.e., a protinite group allot who@e
G/ N by open normal subgroup€ N have order divisible onl) by
prnne P
Letd: Ci — Zp be a surdective humumorphi\m onto  the group Zp =[], ”,J
and let A be a G-module. A henselian P-\-aluation wilh respect (o d is by definitior
a homomorphi\m

which sati€lie€ the fullowmg propenie\:

=Z2Zand © Zjr(£ for all natural number€ n which are
only by primes in

(i) t-(NrnAA-1 = {KL fur all finite extemiom KIk, where fK = {d(G): d(G)).





Under the hypothesis that H'(G(L|K),U;) = 1 for i =, — 1, for all unramified
ions L|K . prove the existence of 4 jcal reciprocity homomarphism 74 :
GILIK)™ — Ay /N;ix A; for every finite Galois extension L1K .
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Exercise 3. Lee d : G -+ Z be a homomorphi€@m. A a G-modulc which
\ati@pfie€ axiom (5.1), and let v Ai. -+ be a henelian valua!10n with rc€pcct to d.

Let K Ik be a finite exten€pion and let @pec(K) be the €et of microprimes of K
(€cc §4. exercise 1-5). Define a canonical mapping

K :spec(K)----+ AK/N-iKA(,
and €how !ha!, for a finite extension, the diagram

opec(l) @ Al

i o

spec(K) —5— Ax/Np, Af

commutes. Show furthermore that, for every finite Galm€ exten€ion LIK, « induce€
the reciprocity isomorphism

FLIK: G(LIK)--—+ AK/NLIKAL.

Hint: Let tp E ek he an element such that dK(tp) EN. Let E he the fixed field ot
<p and

Ay = lim Ag, J
Where varies over the finite subextensions of X| and where the projective
limit 16 with re€ppect to the norm maps ---+ AK.,- Then there is a

@urjectivc homomorphism ter: Ar—-—+ Zand a honmmocpl,i, MNrik: Ar----+ AK.

§6. The General Reciprocity Law
We now impose on the continuous G-module A the following condition.

(6.1) Class Field Axiom. For every cyclic extension LI K one has
#H'(G(LIKI,Ai,) €/IL: KJ foci €0,

1 fori = -

Among the cyclic cxtcrn,iom, there arc in particular the unramilicd ones.
For them the above condition amount-- precisely to requiring axiom (5.1), so that
one has

(6.2) Proposition. For a finite unramified extension LIK, one has

HI(GWIK),UL) =1 for i=0.—1]





Chapter IV Abstract Class Field Theory

Proof: Since LIK is unramified, a prime element JCK of AK is also a

prime element of AL, As 11-1(G(LIK), =1, every element u E UL
such that NL1K(u) = | is of the fonn u = with a EAL, a= 'PLiK:
So writing a = F E U1, we obtain u = err-1. This shows that

H-'(G(LIKJ.U, 1
On the other hand, the homomorphism VK : AK -+ Z gives rise to a
homomorphi&m

VK: AK/Nt1KAL------ + Z/InZ =Z/n"Jl..,

wheren =Fl: KK =F hiK, beeau5e VK(NL,KArJ = hwz = nz. This
homomorphi&m is Surjective as VK(TCK mod NLIK AL) = | mod nz, and iti&
bijective as #AK /NI 1K At =n. If now u E UK, then we have ti = NLIK (a),
with a EAL, since vK(u) = 0. But O = VK(U) = VK(N1 w(a)) = nvt.(a).
t-.0 we get in facta EU L- This proves that HD(G(L IK). UL)= 1. D

By definition. a class field theory is a pair of homomorphi€ms
(d:C --+Z,v»A--+Z)'
where A isa G-module which &atiStics axiom (6.1). d isasurjective continuout-
. homomorphism. and v is a henselian valuation. From proposition (6.2) and €5.
we obtain for every finite Galob cxtcmion L IK, the reciprocity homomorphism

rLiK: G(LIK)"h-----+ AK/N1_wAL

But the class field axiom yields moreover the following theorem, %hich

represents the main theorem of clat-.t-. field theory, and which we will call the

general reciprocit)' law.

(6.3) Theorem. For every finite Galois extemion LIK, the homomorphism
I, 1K : G(LIK)"™"----—-+ AK /NLIK AL

is an isomorphism.

Proof: If MIK js a Galois suhextension of LIK, we get from (5.8) the
commutative exact diagram

-+ G(LIMJ © G(LIKI © GMIKI@ |

o [ on [

N
An/NumAe —5 Ag/NLk AL —— Ax/Nyix Ay — |

We use this diagram to make three reduction._,
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First redu(‘fion. We may assume that G(LIK) is abelian. For if the
theorem is proved in thi" ca€pe. then, putting M = L"h the maximal
abclian subextension of LIK, we find G(LIK)'h = G(MIK), and the
commutator subgroup G(LIM) of G(LIK) is precisely the kernel of r,.1K,
i.e, G(LIK)ah » AK/NL1KAL is injective. The surjectivity follows by
induction on the degree. Indeed, in the case where G(LIK) i> solvable,
one has either M = L or [L : M] < [/. : K], and if 'Mik and rLim are
Qurjective, thenso is In the general ca'-e, let M be the fixed field of a
p-Sylow subgroup. need not be Galois, hut we may use the left part
of the diagram, where r, M is surjcctive. It then suffices to show that the
image of Nnmik i) the p-Sylow subgroup sp of AK /N1.1K AL. That thi®" holds
true for all p amounts to saying that rLik is surjective. Now the inclusion
AK S; AM induces a homomorphism

ii AK/Nt, KAL------ + AW/NLIMAL..

such that NmiK ui = [M : K. As (M : K], p) = I, Sy, & Sfl b
,.urjcctive, sos,, lies in the image of NmIK, and therefore of rLik-

Scwnd reduction. We may assume that LIK is cyclic. For if MIK varies
over all cyclic subcxtensions of L1 K, then the diagram shows that the kernel
of r,.;k lies in the kernel of the map G(I.IK) » TT,W G(MIK). Since
G(L IK) is abelian. thi<, map is injective and hence the €ame is true of rLik.
Choo@ing a proper cyclic subcxtcnsion MIK  of L IK, -Urjcctivity follows by
induction on the degree as in the first reduction for solvable extensions.

Third reduction. Let LIK be cyclic. We may asrnme that hik = I. To
sec this, let M = L n K be the maximal unramified subextcnsion of LIK.
Then him = 1 and rmik is an isomorphism by (5.7). In the bottom

sequence of our diagram, the map NmiK b injective because the group€
in this sequence have the re@pective orders [L : MJ, [L : KI, fM : KJ by
axiom (6.1). Therefore rLik i">an isomorphism if 'Lim i<,

Now let LIK be cyclic and totally ramified, i.e., hw =I.Let a be a
generator of G(L 1K). We view er via the isomorphim1 G(L IK) € G (L If<)
as an clement of G(Z'li<), and obtain the element if= at.pL E Frob(LIK).
which i€ a preimage ofa E G(I.1K) wch thatdK( =dK(t.pL) = .hig = I.
Wethu,;, find for the fixed field EIK ofa- that frik = !,and sOENK = K.
Let MIK be a finite Galois subextension of LIK containing E and L, let
Mo = M n K be the maximal unramified subextension of MIK, and put
N = NMiMo-As 2,1k = .NW =l.one finds N IAr = NEIK,N L1 = NLKK
(sec the proof of (5.3)).
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For the injectivity of rLIK, we have to prove this: if rLIK(ak) = I, where
0:Sk <n = [L:KI thenk = 0.

In order to do this, let ITJ; E Ar;, ITL E AL be prime elements. Since
.E.L <;; M, rrl:and ITL are both prime elements of M. Putting rri = urrf,,
u E UM, we obtain

rLIK (ak) a= N(rri) a= N(u) N(rrf) a= N(u) mod NLIK AL.

Fromr,_1K(aA) = I, itthus follows that N(u) = N(v) forsome v E {h, so
that N(u-1v) =1.From axiom (6.1), we may write u-1v = a®1 forsome
a E Aw, and find in AM the equation

(rrft),,.-1 = (nfv)"-1 = (rriu-lv)"-1 = (acr-1)"-1 = (ati-1)"r-1 _

andsox = nﬂ'al_I‘ E Now vMo(x) E Zand n1-Mo(x) = 11M(X) = K
imply that one has k = and so rLIK is injective. The surjectivity then
follows from (6.1). [m]

TheinverseofthemappingrLIK :G(LIK)""---+ AK/NLIKAL gives.for
every finite Galois extension LIK, a surjective homomorphism

(L LIK): Ak —> GULIK)“

with kernel Nt,IK Az« This map is called the norm residue symbol of L IK.
From (5.8) and (5.9) we have the

(6.4) Proposition. Let LIK and L'IK" be finite Galoi. ¢ extensions . @uch that
K <;; K'and L <;; L' and leta E G. Then we have the commutative diagram8

(LK) Ak@ (LK G(LIKt"

A~ Gk

1 1 1 1

K 9 G(LIK)ah, A @G(LITIKIT)™.

and if K' <;; L, we have the commutative diagram





AK' @

G(LIKF"

e
G(LIK)™.
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The definition of the nonn residue symbol automatically extends to
infinite Galois extensions LI K. For if L; | K varies over the finite Galois
subextensions, then

GLIKY™ = tim G(L, 1K)

(see 82, exercise 6). Af, (a,L,,1K)IL,il! = (a,L,IK) for L,, 2 L,, the
individual norm residue symbols (a. L,IK), a E AK, determine an element

(a,LIK) £ G(LIKJ™,

In the special case of the extem,ion Kl K, we find the following intimate
connection between the maps dK, VK, and ( ,i<IK).

(6.5) Proposition. One has

(a,KIK)=<p/(a), andthus dKo( ,KIK)=VK.

Proof: Let LIK be the subextension of RIK of degree f. As zZ/f'Z =
Z/fZ, we have 1JK(a) = n + withn E Z, z E Z; that is, a= un;ht,
withu EUK, hE AK. From we obtain

(a, RIK)IL = (a,LIK) = (nK, LIK)n(h, LIK)1 = <fi2ik = 'P2(a)IL.

Thmwe must have (a, i<IK) = 'P?fol_ [m]

The main goal of field theory is to classify all algebraic extensions of
a given field K. The law governing the constitution of extension& of K is
hidden in the inner @tructure of the base field K itself, and should therefore
be expres5cd in terms of entitief, directly associated with it. Class field theory
wives this problem as far as the abelian exten&ions of K arc concerned.
It establishes a | - I-correspondence between these extensions and certain
subgroups of AK. More precisely, this b done as follows.

For every field K, we equip the group AK with a topology by declaring
the co&etf, aNL:K AL to be a basis of neighbourhoods of a E AK , where L IK
varie<, over all finite Galois extensions of K. We call this topology the norm
topology of AK.

(6.6) Proposition. (i) The open subgroups of AK are precisely /he clo8ed
rmhgroups of finite index.

(i) The valuation VK : AK -+ Z is continuous.
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(iii) IfLIK i!> a finite extension, then Nr.1K: AL- AK is continuous.
(iv) AK i!> Hausdorff if and only if the group

Al=nNLiKAL
L

of universal norms is trivial.

Proof: (i) If},/ is a subgroup of AK, then
N=AK-....

Now, iLV i5 open, so are all cosets u).,./, so that .,Vis closed, and since ;V has
to contain one of the neighbourhoods NLIK AL of the ba:-b of neighbourhood:;,
of 1, /Il is also of finite index. If, conversely, .A! is closed and of finite index,
then the union of the finitely many cosets a}./ #- }V is closed, and so }./
is open.
(i) The groups JZ, f e N, form a ba:,is of neighbourhoods of O € Z
(Qee 2), andif LIK is the unramified extension of degree f", then it follow€y
from (4.7) that N

v (NLik ALY — focta) € FZ
which shows the continuity of vk.
(iiii) Let Nrw,K AM be an open neighbourhood of | £ AK. Then

N1.1K<NML1LAMr) = NttLIK AM[. S; N.wwAM,
which :-..hows the continuity of N, iK.
(iv) b self-evident. a

The finite abelian extension:,, LI K are now classified as follow:,,.

(6.7) Theorem. A @sociating
L 1> VtL=NLIK AL

set.€p up a 1-1-corre!>pondence between the finite abe/ian extension.€ LI K and
the open subgroup!>- JV of AK. Furthcmwre, one has

S 12 { vt 2Nl Atae =5h n b/, v sLe=va e

The field L cmTe:c.ponding to the :,,ubgroup },/ of AK is called the class
field associated with .,V. By (6.3), it satisfie:,,

G(LIK) "AK/N.
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Proof of (6.7): If L, and L2 are ahelian extensions of K. then the transitivity
of the norm implies}V,..L, < .NL, ny/L-::.- If, conversely, ae N,.;n/VL, then
the element (a, L1L2IK) £ G(L;L2IK) projects trivially onto G(L, IK). that

is,(a,L11K) = | fori = 1.2. Thus(a,L1L2IK) = li.e.,a E/N-Li. We
therefore have /LIt 1 = NL n /Ir and so
NL: 2N,," {=:}/,f.; ndVL, =3V1.,, =NL, Liz: K

=[L2: KI{=:} L1 £ L2
Thi" shows the injectivity of the correspondence L i /vL.

If JV is any open €@ubgroup, then it contains the norm groupJVL = NLIK AL
of some Galois extension LIK. (6.3) implies that NL = .,Vf',h, so we may
a%ume LI K to be abelian. But (.,V. LIK) = G(LIL") for some intermediate
field L' of LIK. Since J\./ 2 J,/L. the group JV is the full preimage of
G(LIL") under the map ( .LIK): AK---+ G(LIK), and thus it is the full
kernel of (. L'jK) : AK -+ G(L'IK ). Thus Ar=JVt,. This shows that the

correspondence L i— NL is wrjective.
Finally, the equality Ni. [ v, is obtained as follows.
LINL2£ L, impliesthat /qt22 )L, and thus
IvlaniL-: "2JVE1ArL,
As;\N/'r..t., is open, we have just shown thatf,/L,Arl.,=}../L for some finite
ahelian extension LI K. Bu,tvL £ML impliesL £ L, n L2, €o that

Ny Niy = Mo 2 Ny - o
Exercise |. Letn be number, an<l a@@ume =IE Al =1) of
order 11. A@ A" Let K be a field M, C; and let
the maximal abelian excen@yion ot exponent n. If 1.IK 1e linite, one e

= Al-

Exercise 2. Under the hypothe\e\ of exercise |, Kummer theory and cla€p€p field theory
via Poniryagin duality G(LIK) x Hom(G(LIK),/1,Il----- p,, a nondegcncrate

nlapping (the ab€cracl "Hilhert \ymbol")

() D AKIA; x AK/\

Exercise 3. Lei p he a prime number and (d: (;

field 1heory in the €en\c of §5. exerei@c 2. Let d' :

homo111orph1€m, and 1K Che 2;,-exten€ion defined by d. Let
composite ot

Z" he Che

A_(_€©CRIK)® 'E,.

Then (d'.v) i% abo a p-cla\@ field theory. The norm re@idue €ymbol,
(d.v) and (d".v') (No @lalcment hold, in Ihc case or
field thcone, (d G-—- v; A, -
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Exercise 4. (Generalization to infinite extensions.) Let (d: G — Vi A> Zi

be a class field theory. We assume thal the kernel U; of v : 4. —> compm:t for
every finite extension X |k. For an infinite cxtension X |k, psi
Ak=)jQt Ak,
where varies over the finite suhextension€ of K Ik and the projective limit i€
taken respect to the norm map€ NKolk™: AK@- AKd:- Show:
1) For every (finite or infinite) extcn€lon LIK. one ha€ a norm map
NL11< A].‘ - Am"

and 1f LIK i@ finite, there is an injection ik : AK > Ay If furthemmre LIK i€
Gal01€y, then one hap AK 6;1\5'“ ©

2) For every extension Klk with finite meﬂia degrec K = [K Nl 1], (d, v) induces
a cla@# field theory (d..- : GK » Z, vx : Ax — Z).

3) If K C K’ are extensions of & with fx, fx < oc, and L|K and L'}K" are (finite
or infinite) Galois cxtensions with L € L', then one has a commutative diagram

Re U Gk

1

S GLIK) N

Exercise 5, If LIK 16 a finite Galm extension, then Gt 1s a G(LIK)-module ma
canomcal way, and the tran€fer from G..- to G1 is a homomorphism

Ver: Gl » (G1'/1111<).
Exercise 6. (Tautological class field theory.) Assume that lhe profinitc group G
©ali@lie@ the condition: for every finite Galoi€ cxtemion,

Ver:Gl'' » (Gtfillk1

is an isomorphism. (These are the groups cohomological dimen-
Jion 2" (see 11451, chap. 111, th. Put mr = and form the direct limit
A= LI Ax via the transfer. A, 1s identified Al

Show that for every cyclic extension LIK one hig

#H'(G(LIK).Ai.)=111L:KI rw,él

and that for every @UTJective homomorphism d : G - Z, the induced map
=c" > Zisa hen€elian valuation with respect to d. The corre@ponding rec1-
map rlik: G(LIK) » A..-/NL]1..-Al i€ e€sentially the identity.
Abstract cla@s field theory act.Juire, d much broader range of applir.:atlon€ if 11 i,
generaliLed a, follows.

Exercise 7, Let (; be a prolinite group and R(G) the category of finite G-,eh.
i.e., of finite @et€ X with a continuous Ci-operation. Show that the





tran@ltivc G-els in B(G) are,upto i€omorphi@m. the €ets -..here GA
open @ubgroup of G, and G operate, via multipl1catlon on
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If X i€ a finite G-set and x E X, then
n1(X,x) =G, = {rr EGlax =x)
is called the fundamental group of X with ba€e point x. Foramap / : X —+ Y m

B(G), we put
G(XIY)=Autr(X).

f is called if X and Y arc connected and G(XIY) operates tran@itively on
the fibres

Exercise 8. Lct f : X —u Y be a map of conneucd finite G-€els, and let x £ X,
£ Y. Show that f i€ Galoi.€ if and only i 11 (X. ,1,) i€ a nonnal subgroup
In this case, one has a canonical i€omorphism

GX|Y) = 7 ¥ yy/mX, s |
A palf of functor@
A= (A.A) B(G)--J- (ah),
con@lsling of a contravariant functor A€ and a covariant functor A, from B((;J to
the category (ah) of ahelian groups is called a double functor if
AQ(XI = A,(X) =1 AX)
forall X E B(G). We define
AK= A(G/GI().
If/ ;X -1 Y 1s a morphism in B(G), then we put
A*(H)=f* and A,(f)=f-.
A homomorphi@m h A .. B of double functors 16 a of homomorphisms
h(X) : A(X) —+ B(X) representing natural tran.5formations - B* and A. - B-.
A G-modulation 1€ defined to be a double functor A €@uch that
(i) AX DY) = AX) X AY).
(ii) It among the two diagram¢

Xty A @ AKX

, n

S U N |
.o )

Yo AMY) € AY)

m B(G), re@p. (ah), the one on the left 1€ cartegpian, then the one on the right i€
commutative.

Remark: G-modulatlon€y were introduced in a general context by A ori .11 under
the name of Mackey functors (sec 132])

Exerci€pc 9, G-modulatlon€ form an abelian c,ltegory.





Exercise 10. If A i€ a G-module. then the function A((G//Gx) = A“% cxtends to a
J-modulation A in such a way that, for an extension L|K, the map f*: Ax — Ay,
esp. fo: AL — Ay, induced by f: G/G, — G/Gg. is the inclusion, resp. the
w0rm Ny,
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The rule AM A is an c4mvalence between the category of G-modules and the
category of G-modulation5 with -Gai01€ descent-, 1.c.. of those CJ-modulations; A
such that

rrOA®Y) . AxtLdL

forevery Galois; mapping f : X --+ Y, is an i5omorphi€n.

Exercise 11. G-modulations are explicitly given by the following data. I.et
Bo(G) be the whose object€ are the G-@ets G/U. where U \aric@
sver the open subgroups «of G, and who@e morphi@me are the
T GJU = GJV for U C V. .a<; well as the map<; c(a)
U tUo™ =10 '(eUc™"), fora E G
Let A = (A%, A,) : Bo(G) — {(abh) be a double functor and for = : G/U--+ GV
U CVy,resp. c(0) 1 G/U = GloUa™ (o € G), define
Ind(* = A,(n): A{G/U)—+ A(GIV),
Resj; = A*(n): A(G/V)--+ A(G/U).
c(0)* = A,(da)): A(G/U)--+ A(G/rrUa-

If for any three open suhgroup€ U. V € W of G, one has the mdm tion formula
Resf oInd@ = Ind!'r-,-i, '@c(a), oRe<,-,,

1hen A extends uni4uely to a G-modulation A: R(G) - (ah).
Hint: If Xi€ an arbitrary finite G-set, then the di5Jomt union
Ax= x@ AGIG,)

i€ again a G-sct, became ¢(0),A(G/G,) = A(G/G,,,). Define A(X) 10 be the
group

A(X) = Homx(X.Ax)
of all G-e4mvariant @ections X--,. Ax of the projccition Al -+ X.
Exercise 12. The function n"*(GfGK) = G';/' extends to a G-modulation

rr''l: B(GJ--+ (pro-ah)
into the of pro-ahelian Thus, for an extension LIK. the map@

/% Gt rerp. .. Gt--+ induced by f: G/G,--+ G/G;.. are given
by the transfer. re€@p. the inclur.ion Gy --+ (K.

Exercise 13. Let A be a G-modulation. For every connected finite G-\et X, let
NAax) = N Ay,

where the interlection is taken over all Galoi€ map<; f : Y _,. X. Show that the
function N A(X) define€ a G-<;ubmodulation NA of A, the modulation of unheerr.al

Exerci<.e 14. If A ir. a G-modulaton, then the ion Ai" againa
which, for connected X, i€ given by

AX) = @ AXYIOA).
where the projective limit ir. taken over all Galo1€ maps f 1Y . X
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For the following, let d : G ----. Z he a fixed surdective homomorphism. Let
X- Y be a map of connected finite G-;,cts and x Ex, y = /{x) EY. The
inertia degree, resp. the ramification index, of /" i€ defined hy

f'x1r = (d(G.): d(G)), re@p. exl) =(,,: /).

where,, f,, 1s the kernel or d: G, » Z, rc>p.d: G- Z. j is called
unramificd =
Exercise 1S.d definesa G-modulation Z ;uch that the maps ¥, corre; pondrng
to a mapping / : X -—. Y ot connected G-scts, are given by

Zn=2 Z=7(X).
This give€ a homornorphi;,m of G-rnodulatiom

d e

Exercise 16. An unramificd map /" : X ---. Y of connected fimte G-@et, is Galois.

andd induces an iomorphl@m
G(XIY) € Z/fxlyzZ.
Let (fix y E G(XIY) he the element which i.., mapped to | mod fxyZ.

Let A be a G-modulation. We define a hell@dlim 1-afllation of A to be a
homomorphism

v A, Z
@uch the submodulation of Z comes from a subgroup Z <; Z which
contains ~ and ;,ati; fics Z/nZ = for all w e N. Let U denote the kernel of A.

Exercise 17. Compare this delinil1on with the definition (4.6) or a hcnselian valuation
ot aG-module A.

Exercise 18. As;,ume that for every unramified map f : X ----. Y of connected finite
G-;.cts. the @equem:c

0= U(Y) 1 U@ UX) _L2.C.o vty -, O
s exact, and that A(Y)*¥1 € £, A(X)] for every Galois mapping j : X ——,. Y (the
atter is a conscquence of the condition |which will he imposed in exerci..e Then
he pair (d, v) gives. for every Cialoi., mapping /*: X -=-,. Y, a canonical

Jomomorphism™
iy P GX|Y) = AQY) /LA

Exercise 19. A,.umc, beyond the condition required m exercise  that for every
Gal01., mapping/ X----,. Y with cyclic Galoi\ group G(XIY), one
(A(Y): TQAX) =[X Y) and ker/ =1m(a¥- I).
where [X : Y] =#/ 1(y). wnh y EY, and a i€ ct generator ot G(XIY). Then
i;, an isomorphism for every Galoi\ mapping / : X ----. Y of prime degree [X :
w: G(XIV)"L, _,. A(/J@AX),
for every Galm€ mapping f : X =» Y.
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Exercise 20. Under the hypotheses of exerci€pe 18 and 19 one obtains a canonical
homomorphVim of G-modulations

who@e kernel 1s the G-modulation NJ\. of universal nonns (€ee exercise 13). It
induce€ an 1@omorphism

of the completion Aof A (see exercise 14).

Remark The theory sket<.:hed above and conlamed in the exercises ha€ a very

to higher class field theory. In chap. V, (1.3),
we will show that, for a Galois cxtcmion LI K of local field€. there 1€ a reciprocity
1somorphi@m

GLIK)™ = K™ /Ngel™.
The multiplicative group K* may be interpreted m K-theury a€y the group Ki(K) of
the field K. The group Ky(K) i€ defined to be the quotient group
K2(K) = (K* 0 K@)R,
where R is generated by all element@ of the form x 0 (1 - .1). Treatmg Galoi€
exten@ion@ LIK of "2-local fields" - these arc di.cretoly valued complete field@
with residue clag€p field a local field (e.g., QI'((..1)), Fp((x})((y))) - the Japane@e
mathematician kaui r,i KAJo (see [!BJ) h1.€p e@tahli€hed « cl.nonicl.l i,omorphilm
G(LIK)"n @ K2(K)/NL.1i,:K1(L).
Kato\ proof 1s intricate and needs heavy machinery. It was simplified by the
Ru@sian mathematician/. rviiiko (€pce [36], 1371, 1381). His proof may be viewed
a@ a @pecial case of the theory sketched above. The hasic idea i€ the following.
The corrc@pondence K € K,(K) may he extended to a G-modulal10n K. It doe@
not .ati.,fy the hypothe-@is of exerci€e 15, o that one may not apply the ab@tract
theory directly to K, But F,11.vm consider€ on K2 the finc@t topology for which the
canonical map () : K* x K*-+ Kz(K) 1s scquencially continuous. and for which
onehas x,. +y. —+ 0, -X,, —+ 0 whenever.(,, —+0, y, -+ 0. He puh
KQUU(K) = K2(K)/A2(K)
where A,(K) i.€ the inter€ection of all open neighhourhood.€) of 1 inK,(K), and he showey
1hat

KA /NLx KT (LY 2 KoK /N Ka(L)

tor every Galoi€ extension LIK, and that Kt'(K) €atistie€ propcrtic€ which imply
the hypothe€i, of cxerc1€e 18 and 19 when viewing K;op a€ a G-modulation. Thi€
makes .110'¢ theorem into a €pecial case of the theory developed above.

§7. The Herbrand Quotient

The preceding section concluded abstract class field theory. In order to
be able to apply it to the concrete ituations encountered in number theory,
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it is all important to verify the class field axiom (6.1) in these contexts.
An excellent tool for this is the Herbrand quotient. It is a group-theoretic
formalism, which we develop here for future use.

Let G be a finite cyclic group of order n, let a be a generator, and A a
G -module. As before, we form the two groups
H°(G.A)=Ac/NcA and H-}(G.A)= N,,-A/IcA,

where

114

Ace{acAla" €3a), Nc;A€@{Ncae,D,a" " laEA}.

nra o /aEAl Nca @1}, IcA @ {aa-1 | a EA}

(7.1) Proposition. If | -+ A -+ B -+ C -+ | is an exact sequence of
G-modules, then we obtain an exact hexagon

Ju
HYG, A) HYG. B)
o N

H™'(G,C) NG, C)

AN 1 NG B) e 4

Proof: The homomorphisms i, .f4 and Ji, f5 are induced by A € B
and B -1...+ C. We identify A with it5 image in B so that i becomes the
inclusion. Then f,, is defined as follows. Let ¢ E cc and let h E B be
an element such that j(h) = c. Then we have j(h"-1) =c"-1 = | and
Nc(h"-Y) = Nc(h")/Nc;(h) = I, so that h"-1 E fi i thus defined
by ¢ mod NcC H- b"-* mod le A. In order to define let c E NuC, and
let h EB be an clement @uch that j(h) =(.Then j(Nc;b) = Nc;c =I.so
that Nch EA. The map f(, is now given by ¢ mod i(;A v- Nebmod Ne A.
We now prove exactness at the place 11°cc, A). Let a E AG such that

fi(a mod NcA) = I; in other words, a= Nch for some h E 8. Writing
c = j(h), we find Je(c mod /r;C) = a mod Ne A- Exactne<;s at H-1(G.A)
is deduced as follows: leta ENr;A and .f4(a mod le A)= 1. ie,a= h"-1

with b EB. Writing ¢ = j(h), we find f,(c mod NcC) = a mod Ic;A.
The exactness at all other places is seen even more easily. 0
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(7.2) Definition. The Herbrand quotient of the G-module A is defined
to be
#H(G.A)
h(G.A)@ #£11:(G A\,

provided that both orders are linitc.
The saliem property of the Herbrand quotient is its multiplicativit:,1.

(7.3) Proposition. 1f | —+ A > B > C —+ | is an exacl ,equence of
G -modules, then one li;rn

h(G.B) € h(G.A)h(G.C)
in the sense that, whenever two of these quotients are defined, .0 is /he third
and the identity holds.
Fora finite G-module A, one has h(G, A)= I

Proof: We consider the exact hexagon (7.1). Calling 11, the order of the
image of f.. we find

#H°(G.A)=ngn,, #HY(G,B)=n1112, #H%(G,C)=n2n1,
#H-1(G,A)=n3114, #II-(G,B)=n4n,. #H-1(G,C)=n,n6.
and thw,
#HO(G, A)- #f/°(G.C) -#H-1(G. B)
©#H"(G.B)-#H-'(G.A) #W'(G.C).

At the same time, we see that if any two of the quotients arc well-
detined, then so is the third. And from the last equation. we obtain

h(G,B) = h(G,A)h(G.C). Finally, if A is a finite G-module, then the
exact €equcnces

1--mmn- +AG------ +A@ICA------ S R EE +. V(A== +A@NCA +l.

show that #A= #Au- #Ic;A =#tvr;A - #Nr;A, and h(G, A)= |. n

If G is an arbitrary group and Ka subgroup, then to any x-module B, we
may associate the so-called induced G-module

A= Ind}(B).





§7. The Ilcrbrand Quotient 311

It consists of all function€ f : G -+ B such that f(,n) = f(x)r for all
r E g. The operation ofa E G isgiven by

F70y = flox)]

If g = {1}. we write Indr;(B) im,tead of Ind/;(B). We have a canonical
g-homomorphism

F1--+£(1),

which maps the !;-submodule

B'©@(fEINd[,(B)I /()€ | fo,x;i)
isomorphically onto B. We identify 8" with B. If R is of finite index, we find
ind2,(8)¢ T B

aEG/1;
where the notation er E G /g signifie5 that a varies over a :-y€tem of left
coset representatives of G/ ff.
Indeed, forany f € Ind&(B) we have a unique factorization f = na f::,
where fa denotes the function in B' which is determined by ,1;.,()=f (a-l).
If conversely A isa G-module with a R-rnbmodule B such that A is the

direct product
A= [| B
oeli/y

then A:

Indj;(B)vial

(7.4) Proposition. Ler G be a finite cydic group, g a .€ubgroup :.md B a
g-module. Then we have canonically

H'(G. Ind§;(B)) = H'(g.B) for i=0,—1.

Proof: Let A= Ind!;(B) and let R be a €ystem of right coset representative€
for G/g with | ER. We consider the g-homomorphi:-ms

n:A-B, t-f(D: v:aA-B, /c-+ IT /p).
pcR

Both admit the g-homomorphism I b
" forrme g,

@Bt A bifi(a) =| 1

forac¢ f.,
a€a section, i.e., r0s = vos = id, and we have





TaNG =Ngow, |
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because one finds that. for f E A,

nenoy & NN N sprme TT11en © NM 1)y NLvin).
TEN pR T T

If f E AG, then f(a) = f(l) forall a E G, and 7(1)= f(r) = /(I)r for
all r € g. The map Jr therefore induces an isomorphism

It sends Ne A onto N"B, for one has n(Nc;A) = Ng(vA) S; N"B on the
one hand, and on the other, Nx(B) = Ng(vsB) = n(Nc;(sB)) t;: n(NcA).
Therefore HO(G. A)= H°(f?. B).
As Ng ov = u o NG, the g-homomorphism v : A -+ B induces a
g-homomorphism
Vv N<-A—t t3B.
It is surjective since v o's = id. We @how that le A is the prcimage of /11B.

le A consists of all elements EA, a E G. for if G = (an) and
a = a(), then /o .1 = f“*”"*‘*“(’u Do ¢ 1 A, In the same one
has 1;B = {h-r—-i | h € B, r € g}. Writing now op = p'1,, with , ER.

Tp E f?, we obtain

va--@ 1T fLoneN el n--e kB
pcR - f(p) P () P

On the other hand, for hr-1 E I,;B, the functionr'l, with f = sh,
isa prcimage as v(fr-1) = vs(hy-t = br-1. After this it remains to
show kcr(v) s; ICA. Let G = (rp), n G: g), R ={1ip, .I1In- 1.
Let f EnG A be such that vif) TT7"'<:rp' = I. Define the function
h EA by h(l) = I, h(L/) = I" f(ip', Then f(ipk) = h(ipk)/h(ipk-1) =
h(r/--4 @1 for 0 < k < n, and f(I)h<P-"2(1) = nt.,. f(ipi) =1.Hence

f = h® i E IcA. Thus we finally get H %(G,A) = H-1(g,B). (]
Exercise 1. Let f.g¢ be endomorphi€ms of an ahclian group A such that
fog=gof =0 Make sense of the following €tatement. The quoticnl
(ker f: im;;)
ar.e(A) = (keriimh

i multiplicative.

Exercise 2. et f,g be two commuting endomorph1€m& of an ahelian group A.
Shov. that
o (A) = 0. (A)go,r (D]

provided all quotlcnl€y are defined.
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Exercise 3, Let G be a cyclic group of prime order p, and let A be a G-module
iuch that go,,(A) is detined. Show that

h(G, AP = an ,(Ac)I /a1, (A).

Hint: Use the exact ;,cquence

Lee N = | +er+ .. +at.! in the group ring Z[Gl. Show that the ring Z[G]/ZN
is i;,omorphic to Z[( I, for (, a primitive p-th root of unity, and that in this ring
one ha@

p=to -1 e]
wheres i;, a unit in Z[G]/ZN.

Exercise 4. Lee LI K he a cyclic exten@ion of prime U;,mg exercise 3,
compute the Herbrand quotient of the group ot unib of L, viewed as a
G(LIK)-module.

Exercise 5. If G is g a normal wbgroup and A a g-module, then
HY(G, Ind@(A)) &





Chapter V
Local Class Field Theory

§1. The Local Reciprocity Law

The ab@tract class lield theory that we have developed in the last chapter
is now going to be applied to the case of a local field, i.e., to a field which is
complete with respect to a di:;.crete valuation, and which has a finite re@idue
class field. By chap. I, (5.2), thc€pc are precisely the finite exten,;ions K of
the fields IQ\, or Fp((t)). We will use the following notation. Let

vk be the discrete valuation normali.t:ed by vk (K@) = Z,
o =laex | vK(a) 2:. O} the valuation ring,
11K ={ae K 1k (@) > O} the maximal ideal.
Kk = ok /PK the residue clas€ field,
ih ={aex* lvk@) =0) the unit group,
Uj;i* = 1 +PY%, the group of n-th higher units, n = 1,2, .
q =gK =#C,
lalp =g vk the nonnalized p-adic absolute value,

M1 the group of n-th root5 of unity, and pn(K) = n;;, N K~

3
by

.or€@imply i1, denotes a prime clement of K, i.e., 13k = 1ok

In local class field theory, the r6le of the profinite group G of ab@tract
class field theory is taken by the ab<;olute Galois group G(klk) of a fixed
local field k, and that of the G~modulc A by the multiplicative group f*
of the separable clm,ure K of k. For a finite extension K Ik we thu€ have
AK = K*, and the crucial point is to verify for the multiplicative group of
a local field the class field axiom:

(1.1) Theorem. For acyclic extension L IK of Joe.ii field8, one has

#NGLIKILLYe LIl ki ro,; €0,
| tori= -1
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Proof: For i = -1 thi;. is the claim of proposition (3.5) (“Hilbert 90")
in chap. IV. So all we have toshow is that the Hcrbrand quotient i<;
h(G.L*) = #H%(G.L*) = [L : KJ, where we have put G = G(LIK).
The exact sequence

| U — LYz ol

in which Z has to be viewed as the trivial G-module, yields, by chap. IV, (7.3),
h(G,C) € h(G,Z)h(G,UL) @IL, KIh(G,UL).

Hence we have to show that h(G, UL) = I. For this we choose a nonnal
basis {aa | er E G} of LIK (see [93], chap. VIII,§ 12, th. 20), a E and
consider inyL the open (and dosed) C -module M = L,ncG Then

the open sets
vn=I+nKM, n=i,2..

form a basis of open neighbourhoods of | in UL. Since Mis open, we have
nijoi. S; M for suitable N, and for n 2: N the V" are even subgroups
(of finite index) of UL, becau:;.e we have

(N;MHN;M) = n'f,fIMMs; ni"oL S; n}n-NMs; nKM.

Hence vnyn S; V* and since | -n;p, forn EM. lies in V". so

does (I - rrKJL)-* = | + rrK(L@,11'nt  1J)_ Via the correspondence
I +rrka i+ a mod ITKM, we obtain G-isomorphisms as in 11, (3.10),

VIV I+ M/nKM = ffi(oK/PK)a" =Indc;(0K/PK).

0sG
So by chap.IV. (7.4), we have H1(G.Vi/vn+* =,I for i = 0. - 1|
and n 2: N. This in tum implies that H'(G, V") = | for i = 0. - |

and n 2: N. Indeed, if for instance i =0and a E (V")c;, then a= (Nchg)a;.
with ho E al E (V1l+lf', and thus a1 = (NGh1)a2, for some h1 E V*!+%.
az E etc.; in general,

a= (Nch)a+l- h, E vn+i. a+l E (vila

This yields a = Nc;h, with the convergent product h = E V",
so that H(G, V") = I. In the same we have for a E such that
Nc;a = I, that a= ha-L. for some h E where a is a generator of G.

Thus H-1(G, vn) =1.We now obtain
WG, UL = h(G. U /VYR(G VD =1
because UL/V* is finite. [m]
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(1.2) Corollary. If L IK is an unramificd extemion of local fields. then for
i=0, -1,0onehas

H'(G(LjK),U1) @ | and H'(G(LjK),u)") €1 fo, ne 12

In particular,
NukUp =Ux and NpxUy = o |
Proof: Let G = G(LIK). We have already seen that H'(G,Ui,) = 1 in
chap. IV, (6.2). In order to prove H'(G,utl) =I.we first show that
H:(G,A% = | and Hi(G,A) = I,
for the residue class field A of L. It fr, enough to prove this for i = -1,
as A is finite, and so h(G,A*) = h(G,A) = |. We have H YG.A*) = |

by Hilbert 90 (see chap. IV, (3.5)). Let f = [A: K] be the degree of A over
the residue class field K of K, and let r.p be the Frobenius automorphism
of AIK.Then we have

Oqul |

#NGA=#{ x EA

and
#(r.p-DA=qf-1,

sincethemap A€ A has kernel k, Therefore H-1(G,A)= NGA/(rp - DA

ol
Applying now the exact hexagon of chap. 1V, (7.1), to the exact sequence

of G-modules
1-ulv) s ul---+A* b1

we obtain H;(G, u£ll) = H'(G, UL)= I, because H'(G,A*) = L. If n is
a prime element of K. then n is abo a prime element of L, €o the map
utl---+ A given by | +an” r-+ a mod PL is a C-homomorphi€m. From the
exact sequence

1 oufi+tio Lufd---+, L L
we now deduce by induction just as above, because H' (G, A)= 0, that
Hi(G,ut-+1)) = Hi(c.uj_n)) =I,

since fI'(G.Uj_'Y) = I =]
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We now consider the maximal unramified extension klk over the ground
field k. By chap. II, §9, the residue class field of k is the algebraic closure K
of the residue cla% field k of k. By chap. 11, (9.9), we get a canonical
isomorphism m
Gk "e(zK) L.

It associates to the clement | £ Z the Frobenius automorphism x 1-+ rf
in G(KIK), and the Frobenius automorphism <fit.. in G(klk) which is given by

aP' =a'f mod P);, a E or

For the absolute Galois group G = G(kIk) we therefore obtain the continu-
om, and surjective homomorphism

d:G--+2.

Thus the abstract notions of chap. IV, 84, based on this homomorphism,
like "unramified", "ramification index", “inenia degree”, etc.. do agree, in
the case at hand, with the corresponding concrete notions defined in chap. IL

As stated above we choose A = J:* to be our G-module. Hence AK = K*,
for every finite extension KIL The usual normalized exponcnlial valuation
v( : k* . Z isthen henselian with respect to d, in the sense of chap. IV. (4.6).
For, given any finite extcn€pion K Ik, ¢vk is the extension of vi.. to K, and
by chap. 11, (4.8).

1 1
_1LVK(K*) = - -vdNK1AK*) = - -, VINKIt..K€).
CK [K: K CK.IK
i.e., vdNK1tK*) = .f"KvK(K€) = f'KZ. The pair of homomorphisms
(d: G -, Y V3, Z)

therefore salisties all the properties of a class field theory, and we obtain the
Local Reciprocity Law:

(1.3) Theorem. For every finite Galois exlcmion L IK of Joe.ii field. € we have
a canonical i8omorp/Jism

okt GULIK) — K* /N igL*

The general definition of the reciprocity map in chap. IV. (5.6), wa€
actually inspired by the case of local cla,;s field theory. This is why it is
especially transparent in this case: let a E G(L IK ), and let 5- be an extension
of a to the maximal unramified extension LIK of L such that dK (ii) E N
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or, in other words, iJIR =({)@,for some n EN. If Lis the fixed field of jj
and - E J; ii, a prime clement, then

rLik(0) = N (rs) mod Ny L]
Inverting rLiK gives us the local norm residue symbol
JLIK) K , G(LIK)"h,

It is surjective and has kernel NLjKL*.

In glohal class field theory we will have to take into account the field
R = Qoc along with the p-adic number fields Q/!" It al'’>0 admits a reciprocity
law: for the unique non-trivial Galoi'i exten'iion CIR. we define the norm
residue symbol
LCIR) : B* — G(C|R]

by
(a,CIR),./=J= +=T.gn().
The kernel of ( , CIR) is the R@ of all po:,ilive real numbers, which
is again the group of norms ©{eel' EC),
The reciprocity law gives us a very simple classillcation of the abelian
extensions of a local field K. Il i:, formulated in the following

(1.4) Theorem. The rule

+ WL = NriKL*

gives a | - I-correspondence hetween the finite abeli:m extensions of a local
Jicld K and the open ,gihgroups }./ of finite index in K *. Funhemwre.

Lty L2 @2 NP2 Ve, VLL 5= V0 ndo/ie, VLo = NI, VL™

Proof: By chap. IV, (6.7), all we have to show is that the subgroups J\(
of K* which arc open in the norm topology are precisely the subgroups of
finite index which are open in the valuation topology. A subgroup N which is
open in the norm topology contain:, by definition a group of nonn5 NLIK L *.
By (1.3), this has finite index in K*. Il is also open because it contains the
subgroup NL;KlIr. which itself is open, for it i<, closed, being the image of
the compact group I11., and ha:, finite index in UK. We prove the converse
first in

The rnse char(K) fn Let},/ be a subgroup of finite index n = (K* : N).
Then K*1'S;;V, and it is enough to show that K** contains a group of
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norms. For this we use Kummer theory (see chap. IV, §3). We may al-1-ume
that K€ contaim the group f.Ln of n-th roots of unity. For if it docl- not, we

put K1 = K(tIn), If Krl contains a group ofnonns nvik;Lf, and LIK is
a Galois extension containing Lj, then

NLIKL* = NK11K(N1.1K1L*) i; NK11K(Nr.11K1iLf)
i; NK11dKt) i; Kw

Solet ;155i; K, and let L = K (€) be the maximal ahelian extension of
exponent n. Then by chap. IV, §3, we have

Hom(G(LIK),1,) ;¢ K'/K™.

By chap. I, (5.8), K*/K** is finite, and then so isG(L IK). Since K* /Nr
is il-omorphic to G(L IK) and has exponent n, we have that Kui i; Nr
and (*) yield1-

#K* /K™ = #G(L|K) = #K* /Ny kL")
and therefore K** = Nt,1KL*.

The ewe char(K) =pin.In thil- cal-e the proof will follow from Lubin-Tate
theory which we will develop in §4. But it i5 also possible to do without this
theory, at the expense of ad hoc arguments which tum out to be somewhat
elaborate. Since the result has no further use in the remainder of this hook,
we simply refer the reader to the beautiful treatment in [122], chap. XI, 85,
and chap. X1V, §6. a

The proof also shows the following

(1.5) Proposition. if K contains then -th roots of unity, and it the character-
istic of K does not divide n, then the extension L = K (@) I K is finite, and
one ha"

NygL*=K*" and G(LIK) = K*/K™|

Theorem (1.4) is called the existence theorem, because it:c. essential
Statement is that, for every open subgroup ./V of finite index in K=, there
exists an abelian extension LIK such that nuiki = N. This is the
“class field" of N. (Incidentally, when char(K) = 0, every subgroup of
finite index is automatically open - sec chap. 11, (5.7).) Every open subgroup
of K* contains some higher unit group v¥%'l, as these fonn a basis of
neighbourhoods of 1in K*. We put U\]O = UK and define:
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(1.6) Definition. Let LIK be a finite abelian extension, and n the smallest
number:::_ 0 @uch that ufls;:: NLIK L*. Then the ideal

f =p%,

is called the conductor of LIK.

(1.7) Proposition. A finite abelian extension LIK is 11nrnmified if and only
ifils conductor is f = 1.

Proof: If LIK is unramified, then UK = NLIKVL by (1.2), so that
f = 1 If conversely f = I, then (» 5;; NLIKVL and rr E NLIKL*,
for n = (K*: N1.1KL*). If MIK is the unramified extension of degree n,
then NMIKM* = (rr;) x UK € N1IKL*, and then M 2 L, i.e, LIK is
unramitied. ol

Every open subgroup .A/ of finite index in K* contains a group of the
form (rrf) x U€@'l. This is again open and of finite index. Hence every
finite abelian extgnsion LIK is contained in the cla:-5 field of wch
group (rrf) x UA Therefore the class fields for the groups (rrf) x
arc particularly imporlant. We will characlerize them cxplicilly in §5, as
immediate analoguc5 of the cyclotomic fields over Qj,. In the case of the
ground field K = Qp, the claS5 field of the group (p) x U} is precisely
the field Qp(/1,p") of p"-th root5 of unity:

(1.8) Proposition. The group of norms of the extension :QIp(/Lpn)IQ/! is the
group () x

Proof: Let K = QI' and L = Qp(/1-p")- By chap. I, (7.13), the extension
LIK is totally ramified of degree pn (p - 1), and if t; isa primitive p"-th
root of unity, then 1- t; is a prime element of L of norm N1,1K(l - t) = p.

We now com,ider the exponential map of 1J!p- By chap. Il, (5.5), it gives an
isomorphism

exp: p@ -+ Uj_"l
for v o |, provided p # 2, and for v :i_ 2, even if =21t
transfonns the isomorphism PK -+ L given by a 1+ - Da
into the isomorphism th > by x 1+ so that

T

cu WPt P 1} = ufl if p #- 2, and f=uf)ifp=2.>1
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(the case /0 = 2. n = | i5 trivial). Consequently, we have utl £ NL1KL*
if p -=i= 2. For p = 2 we nolc that

ui(3= u;_'lusupi = (uft?us(uf'y.
because a number that is congruent to | mod 4 is congruent to | or 5 mod 8.
Hence

ufd= fiyzr-1u s ()
11i5 easy to show that 52 = NLIK (2+i), sout™ ENLIK L * holds also in

case p = 2. Since p = NLIK<I - (). we have (p) x UJ;'l @ NLiKL*.
and since both group5 have index pn *(p - 1) in K*, we do find that
N1.KL* = (p) X uf® a€@ claimed. [m]

A€ an immediate con5equence of this last proposition, we obtain a local
version of the famous theorem of Kronecker-Weber, to the effect that every finite
abelian extension of Q iscontained in a cyclotomic field.

(1.9) Cornllal'y. Every finite abelian cxICnsion of L IQp iscontailled ina field
:QI/1((), where( i€ aroot of unity. In other words:

The maximal abelian extension Q€" IQp is generated by adjoining all roots
of unity.

Pl'oof: For @uitablc .f and n, we have (pf) x S, NL1KL*. Therefore L
iscontained in the cla€s field M of the group

(P x U = ((p") x Ug,) N ((m ]

By (1.4), M i5 the composite of the class field for (pf) xU(ri, - this being
the unramitied extension of degree f - and the class field for P x
M s therefore generated hy the (p | - I)p*i-th roots of unity.

From the local Kronecker-Weber theorem, one may readily deduce the
global, classical Theorem of Kronecker-Weber.

(1.10) Theorem. Every finite abelian ex/cm.ion LI:QI is contained in a field





Q(() generated by aroot of uniry (.
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Proof: Let S be the set of all prime numbers p that are ramified in L, and
let LI' be the completion of L with respect to some prime lying above p.
Then LplQ,, is abelian, and lherefore Lp £; Qp(Jl111,), for a suitable np.
Ut p™ be the precise power of p dividing np, and let

n=TI p'P.
PES

We will show that L £; Q(u,.). For thi€ let M = L@l Then
abelian, and if p is ramified in M 1Q, then p must lie in S. If Mp
completion with respect to a prime of M above p whose restriction to L
gives the completion Lp, then

Mp= Lp(fln) = Qp(-p''n’) = Qp(l-lp"f)Qp(II11L),

wilh (n',p) = L is the maximal unramified subextension of
Qp(I-1p"1,,;,)1Q1I". The group Ip of MplQI' is therefore isomorphic to
the group G(Qp(/11,.,,)IQI"), and consequently has order <.p(p""), where <p
is Euler's function. Let/ be the subgroup of G(MIQ) gencraled by all Ip,
p ES. The lixed field of/ is then unramitied. and hence by Minkowski's
theorem from chap. 11, (2.18). it equals Q, i.e.,/= G(MIQ). On the other
hand we have

# 0 Nu.e Nerm e oM [QL.) QL
P=s =@

and therefore [M: Q] = [Q(f.Ln): QI, so that M = Q(W,,,). Thi€ show€ that
L <Q(.). a

The following cxcrcigpedp 1-3 presuppo@pe exercigpe€y 4-8 or chap. 1V, *3.

Exercise 1. For the Galois group/'= G(RIK), one has canonirnlly
HA@.ZIIL) s 2zl and HA(Ih,) o UKK*K*,
the latter provided chat n i\ not divisible by the re\idue charactemtic.
Exercise 2. For an arhitrary field Kand a GK-module A, pul
HY(K. A)= H'(@ck, A).
If K isa p-adic number fidd and n a natural number, then there ex1€ph a nondegen-
erate pairmg

HYK. %/nl) x H'(K, 11,) — Z/nZ
of finite group€p given by
(x.al m- x((a. KiK)).
If 11 is not divi€pihle hy the residue i@tic p, then the ¢ < it or
11,:,(K.Z/n) := IAG(RIK).Z/NIL) ¢; H(K.IL/IN'E)

is the group
LK ) = H(G(K|K). ) © H' (K. i)
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Exercise 3. If LI K is a finite exten€ion of p-adic numher field€, then one has a
commutative diagr;im
nL.zmz)y x WAL Zjnz
'
1
HY(K.Z/nZ) x HY(K.u") Zinz.
Exercise 4 (Local Tate Duality). Show that the statement€ of cxcrci€c€ 2 and
3 generalize to an arbitrary finitt GK-module A instead of z/n'J'., and A" =
Hom(A, i<*) in@tcad ofy".

Hint: lhe exercises 4-8 of chap. IV, §3.

Exercise 5. Let LIK be the compoitc of all Zr-extensions of a p-adic numher field
K with Galoi€y group i€romorphic to  Show that the Galoi€ group
is a free, finitely generated Z;,-module and it€ rank

Hint: Use chap. IL (5.7).

Exercise 6. There i€ only one unramitied 2y,-extem,ion of K. Generate it by roob of
unity.

Exercise 7. Let p be the re@idue charackri@li<.: of K, ,md let L be the field generated
by all rootf, of ot p-power order. The tixed tield of the tor,ion subgroup of

G(LIK) isa It i€ called che cydotomic Z, -extension.
Exercise 8. Let G, 1Q, be the eyclotomic Z,-cxtension of Q,,, let G(Q,1Q,) = Z,
be a chosen andlet J 1 G, >z be the homomorphism  of
the absolute group. Show:
For a @uitable topological generator n of che group of principal unit€ of Q\.
> loga
0:q - 2z, Ve
defines a henf,,clian valuation with to J, mthe f,,enf, e of abtract p-claf,f,, tield

theory (see chap. IV, 85, exercise

Exercise 9. Detcnnine all p-class field theories (d: GK-» Zi, e: K*--+ Zp) over
a p-adic number tield K.

Exercif.e 10. Determine all cla,, field theories (d: ck—> Z, 1 Ky-> Z) overa
p-adic number field K.

Exercise 11, The Weil group of a local field K is the preimage wx of Z under the
mapping dK: k- Z. Show:
The norm re€pidue @ymbol ( ,K"L,IK) of the maximal abclian extension K"MIK
yields an i€omorphlsm
KKy K — Wi,

which maps the group UK onto the inertia group I(KunjK), and the group of





principal unit€  onto the ramification group R{K"'1K).
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§2. The Norm Residue Symbol over QJP

If (is a primitive m-th root of unity, with (m, p) = I, then QIp(OIQ,,
is unramified, and the norm residue symbol is obviou<;ly given by

wpta)

(2, Qp(0)IQ,) ¢ =<7

But if ( isa primitive p'*-lh root of unity, then we obtain the norm residue
symbol for the extem,ion QI'()IQI' explicitly in the <;imple form

(a(.,(01(1t), @ ..
where a = and (" ' is the power (' with any rational integer

r = u-* mod This result is important, not only in the local situation, but
it will play an essential rOle when we develop global class field theory (:,ee
chap. VI, S5). Unfortunately, there is no direct algebraic proof of this fact

known to date. We have to invoke a transcendental method which makes

use of the completion R of the maximal unramified extension | of a local
lield K. We extend the Frobenius <p E G('ilK) tof by continuity. First we

prove the

(2.1) Lemma. For everyc E OR, resp. every ¢ E UR, the equation
r<P- x=c. refp. x<fl=c¢

admits a solution in OR, resp. in UR. Ifx<P = x for.I E OR, thenx E OK.

Proof: Let o be a prime element of K. Then n is also a prime element
off, and we have the (f-invariant isomorphisms

),y D)
|

(see chap. 11, (3.10)). Let ¢ EUR and i"= ¢ mod PK. Since the residue class
field K of R is algebraically closed, the equation X'P =-@pi = X + (' (g = (JK)
hasa solution -1-0 inK = ORIPR- ie,

Y
C=Xi a1, x1EUf(, a1E

For similar reasons, we find that a; = x.f-*a?., for some x; E and
a2 u}21, so that ¢ = (xit2)'P 'az. Indeed, putting a1 = | + harr,
v = I+ y2ir, gives ajx@-<P= | - (yf - v2 - hi)rr mod r ie., we

have to solve the congruence yf - y> - hi=0 mod rr, or equivalently the
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equation Yi - Yo- h, =0 in K. This is possible becau€pe K is algebraically
closed. Continuing in thi€ way, we get

c=taxe)? e, x e USTY, g, d

and passing to tbe limit finally (= xp-l, where X = n:=1xn £ Uf,
The solvability of the equation - x =r follow€ analogously, using the
isomorphisms P[/Pri ¢

Now letx E ciiand x'° =x. Then, for every n € |, one has

*) X=X,,+rr''y1;  withx, EOKandynEOK.

Indeed, for n = 1 we have x =a+ rrh, with a E OR_, h E of(and 1< = x
implies a’>=a mod rr. Hence a= -1.1+rrc, with x1 E OK, C E
therefore x = x;+rr(h+() = .,; +rry;, y; Ent, The equation x

implies furthennore that y,"; = Y., so that we get a€ above

with ¢; € OK, dy; £ or and therefore x = (x, + + ity =
X11+1 +rrit+tyn+l, for5ome x11+1 € OK, Yn+l € OR. Now passing to the limit
in the equation(*) give€ x = limy,....o t, E OK, bccaw,e K iscomplete. D

For a power series F(X1,.. Xy E odfX1, .. Xul], let F'P be the
power scric in oRff X1, ., XuJJwhich arises from F by applying rp to the
coefficient€ uf F. A Lubin-Tate series for a prime element rr of K is by
definition a power series e(x) E OK[IXI] with the properties

e(x) = rx mod deg2 and e(x) =x1 mod rr,

where g = vk denotes, as alway<€p, the number of element<; in the residue
class field of K. The totality of all Lubin-Tate series is denoted by S,. In
Err there are in particular the polynomiab

e(X) = uxi + rr(a, X1+ +a2X?) +rrX,

where u.a; E ok and u = | mod rr. Thege are called the Lubin-Tate
polynomials. The simplest one among them b, the polynomial X" + n X.
In the case K = for example, e(X) = (+ X)' - | is a Lubin-Tate
polynomial for the element p.

(2.2) Proposition. Letrr and If be prime clement., of R, and letc(X) E £,
il(X) E Err be Lubin-Tate series. Let L(X 1, . x1) = l:= A1 X: bealinear
form with coctYicients a, € OR such that

TL(X-, .., X,y =FLA(X,,
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Then there is a uniquely determined power :cries F(Xq,.......,Xn)
EoRUX1, XnJJsatigfying
F(X1, . %u)=L(X1,...cccooo...... )MOddeg2.

AF(X1 . X)) = FE(EX), ... e(Xn) |
Ifthccoefficientsofe, €, L lie ina comp/ctesuhringo ofoi <;uc/1thato™ = c=,
then F ha8 coefficients in o as well.

Proof: Let cs be a complete subring of Of< such that 0" = o, which
contains the coefficients of e.e,L. We put X = (X1, .... X,,) and e(X) =

(e(X1), .e(X11). Let
F(X) @ %=, E..(¥) E VIIX]]
he a power series, Ev(X) its homogeneom, part of degree v, and let
FrX)= ‘; Ey(X).

Clearly, F(X) is a solution of the above problem if and only if F1(X) =
L(X) and

a e(FdX)) =F/(C(X)) mod deg(r + 1)

for every r 2. I. We detennine the polynomials E,(X) inductively. for
v =1 we are forced to take E;(X) = L(X). Condition (I) is then satisfied
for r = 1 by hypothe<;is. Assume that the f-\,(X), for v = 1, ... ,r, have

already been found, and that they are uniquely determined by condition (1).
We then put F,+1(X) = f-,1(X)+ E,.,1(X) with a homogeneou€y polynomial
Erii(X) E of[XI of degree r + | which has yet to be determined. The

congruences

e(F,+1(X)) =e(F,(X)) +ITEr;1(x) moddeg(r+2),
F:+i{e(X)) = F,€(C(X)) + rr+E;+,(X) mod deg(r +2)
show that E, +1 (X) has lo satisfy the congruence
) Gr+l (X) + 1T, +1(X) - i +1")"+1(X) = 0 mod deg(r + 2)

with G,+1(X) = e(F. (X)) - F/(f(X)) E o[[XJJ. We have G, 1(X) =0
mod deg(r + 1) and

) Gr-1(X) = F, (" - F"(x) =0 mod IT
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because e(X) = C(X) = Xgq mod n and aP = ag mod n for a E o.

Now let X' = x;* X€' be a monomial of degree r + 1 in o[XI- By (3).

the coefficient of X' in G,+1 is of the form -n/3, with fJ £ 0. Let a be

the coefficient of the same monomial X' in E+1. Then na - Jfa'P i5 the

coefficient of X' in nEr+l - ffE'f+i- Since G,.11(X) = 0 mod deg(r + I).

(2) hold€ if and only if the coefficient a of X' in Er+l satisfies the equalion

2) —af+ra—T ¥ =0

for every monomial X' of degree r +1. Thi€ equation has a unique 5olution a

in OR. which actually belongs to o. For if we put y = r-r 2¢*- 1 we obtain

the equation

a- yaP =fJ.
which is clearly 50Jved by the series
a =/J+yfff +y11<PJ3<P2 +---Eo0

(the series becaus;.e vi(y) € 1).If r.i is another €olution,

then a - a' - a"P), hence VR(a - a) = VR(y) + Vi<(@ -

a)yP) = VFA(Y) + vi<(a - a"), i.e.. Vi<(a - a')= oobecause VF(Y) @ |,

and therefore a = a. As a consequence, for every monomial X' of

degree r + 1, equation (4) ha5 a unique solution a in o, i.e., there

exists a unique Eri1(X) E ofXI satisfying (2). This finishes the proof.
C

(2.3) Corollary. Let rr and ff be prime elements of K, and let e £ En,
C E En be Lubin-18te series with coefficient. ¢ in oK. Letn = 1117, u E UK,
andu = c<l ¢ e UR. Then there is a uniquely detennined power series
U(X) e CIf? I[X ]I such thatO(X) = eX mod deg 2 and
C(;0=0<Pnf.
Furthennore, there i.€ a uniquely determined power series [11](X) E ok [[X]I
such that lu](X) = uX mod deg.2 and
Colul=fu]oC.

Tlicy salisfy 4% = 0o lul
= o

Proof: Putting L(X) = FX, we have nL(X) = JfU'(X) and the first
claim follow" immediately from (2.2). In the €ame way, with the linear
for'n L(X) = uX, one obt@lins the e.xi@tencc and @€iquenes€ of the power
senes [u](X) E oa [IX]]. Finally, definmg 111 = gva 0111}, we get

€001 =(e00)¥' ]O[u]:(0¥'OC)<P71Cfu]:(()¥‘ 10[11])0',)(3:&'('0(3,
and thw, 0, = 0 because of uniqueness. Hence (it =0 o ful. D





§2. The Norm Residue Symbol over Q\, 0

(2.4) Theorem. Leta= upvr(a) e Q.€-and let ( be a primitive p*-th root of
unity. Then one h:i.€
-t
(2. QONQ,) ="

Proof: As N is dense in Z,,, we may al-cumc that u E N, (u.p) = 1.
Let K = Qp, L = Q,((). and lel a E G(LIK) be the automorphism
delincd by

(=" w

Since Qp(OIQ\; is totally ramified, we have G(LIK) _ G(lli), and
we view a as an clement of G(IIK). Then a- = rT{!L € Frob(LIK) is an
element such that dK(ir) = 1 and OIL= a. The fixed field E ofO is tolally
ramified bccau<ie filK = dK(&) = 1 by chap. IV, (4.5). The proof of the
theorem i5 based on the fact that Ihc field E can be explicilly generated by
a prime element ir  which is given by the power series 0 of (2.3).
In order to do this. ai,.sume 6 and cp = ({!L have been extended continuously

to the completion L of L, and consider the two Lubin-Tate polynomials

e(X) =upX +Xxfi and I'(X) = (I +X)f'-J

as well as the polynomial [u](X) = (I + X)* - I Then I(uj(X))
(1+X)"f - 1 = ful(e"(X)). By (2.3), there isa power series 0(X) E Of:.[[XIl
such that

ecO=0'Po£' and (J<P=0@fu].
Substiluting the prime element )., = ( - 1 of L, we obtain a prime clement

of Eby
rrr =0(A).

Indeed, ful(Aa) =(1+ A")"- 1= (all- 1= (- I= A, and therefore
;€ U'(L") € 0(ful(1."l) € 0().) @ rrr,
i.e., rr2. E E. We will show that
P(X) =e"1(X)fl 1 +upe z,;[XI

isthe minimal polynomial of rri:;, where e*(X) is defined by e°(X) = X and
e'(X) =c(c*-1(X)). P(X) is monic of degree p"-*(p- I)and irreducible
by Eisenl-lein's criterion, as e{X) = XI' mod p, and so e':-}(X)P-!
XI"-Yp-u mod p. Finally, eli(X) = e"-1(x) (up+ el.(X)I-}) =
el11(X)P(X), so that

P(rrr)c"-*arz,) = e"(rrr).
Since e’ (rrr) = e*(0(A)) = (<P (' (A)) = 0<P'((I+))P' - D= ¢ - D).
we have en(rr.d = 0. e"-}(rrr)-/=-0, and thu€ P(rr1:) = 0.
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Observing thal NLid(-1) = (- 1/ p,d = IL : KJ (see chap. I, (7.13)),
we obtain

Nx K(ni;) = (-1)JP(0) = (-1)"pu = u mod N1.wL*

and therefore rLIK (rr) =11 mod NtIK L= i.e., (u, LIK) = (a, LIK) =a,
required. D

In order to really understand this proof of theorem (2.4), one ha€ to
read §4. Let us note that one would get a direct, purely algebraic proof, if
one could show without using the power series O that the splilting field of
the polynomial e*(X) is abelian, and that its elements are all fixcd under
0 = rrtpL. This splitting field would then have to be equal to the fieldl"
and every zero of P(X) = e"(X)/e" 1(X) would have to be a prime
clement nx Er @uch that Nx,K(nr;) = u mod NL3KL*, in which ca@e
ILIK () = u mod NL KL*, and so (11, L IK) = m

Exercise |. The p-cla@\ field theory (d: (;1J,, —+ Z/!, v: Q;,---+ Z) for the unramili.cd

z,,-extension of 1Q,,, and the p-cla- field theory (J: 6Q. -+ Zi. D: Q@,—+ Zi} for
the cyclocomic Zp-extenslon of Q {©cc @1, eierci@e 7) yield the same nomi residue
,ymhol ( . LIK).

Hint: Show that thi€@tatement is equivalent to fornmla (2.4): (u. Q. ((11GLi,)( = (" _

Exercise 2. Let LIK be a 1011.1ly ramified GalOls e:w..tegion, andjet[ (1-c.p. Ri be
che completion of the mtl:i:imal unramitied extensmn L (resp. K) of /. (resp. K)
Show that Nt.q [+ = Ks, and that clocry y E [@ with Npq;(r) =li€ ofthe fom
y=TT, Lrr, EG(LIK).

Exercise 3 (Theorem of D""0RK). Let LIK be atotally ramified abelian e:i
p-adie number liekk Let.( EK' and y ELe \ueh that Nrik(y) =.1 Let:, E [+
,.ind choose a, E G(LIK) such that

—_n

wo =N<
Putting rr = n, rr,, one ha@ (t. LIKJ = -l
Hint: See chap. 1V, §5, cxen:1€e 1.

Exerei@e 4. Deduce from exerel@e€ 2 and 3 the formula (u,iQ ,(01QI)( = " ! fur
wme p"-th romofunity (.





§3. The Hilbert Symbol 333

§3. The Hilbert Symbol

Let K be a local field. or K =IR. K = C. We assume that K comains
the group 11,, of n-th roots of unity, where 11 i€ a natural number which
i€ relatively prime to the characteristic of K (i.e, 11 can be arbitrary if
char(K) = 0). Over :c.uch a field K we then have at our dispo<,a], on Ihc
one hand, Kummer theory (sec chap.lV. §3). and on the other, class field
theory. It is lhe interplay between both theoric<,, which gives rise to the
"Hilbert @ymbol" Thi:-. i€ a highly remarkable phenomenon which will lead
u:c. to a generalization of the classical reciprocity law of Gaus€p. ton -th power
residues.

Let L = K(Qg be the maximal abelian extension of exponent n.
By (1.5), we Ihen have

NLIKL* = K*",
and class field theory give€y us the canonical isomorphi@m
G(LIKI "' K'/K™.
On the other hand, Kummer theory gives the canonical isomorphism
HOM(G(LIK). 11 q);::::::K: H/K*

The bilinear map

G(LIK) x HOM(G(LIK),11, )=+ py,  (a.X) 1+ x(a).
therefore defines a nondcgenerate bilinear pairing

-15-) 5 Kk x KAt 11y

(bilinear in the multiplicative sense). Thb pairing i€ called the Hilbert
symbol. Its relation to the norm residue symbol i:-. dc5cribed explicitly in
the following proposition.

(3.1) Proposition. Fora.h EK*, the Hilbert symbol (T) E py, is given

i @ KemIK v~ P@Myp:.

Proof: Theimageofaundertheisomorphi@mK*/K*....G(LIK)ofclas€
field theory is the norm residue symbol a =(a.LI K).The image of h under
the isomorphism K*/KM € Hom(G(LIK).11,, of Kummer theory i€ the
character Xh: G(LIK)--)- f.Ln given by x1,(r) = r\/"h;\/h‘ By definition of
the Ililberi symbol, we have

B =x1,@=a"Vv'hA1Ch.

hence (a. K(VB)IK)V b = (a, LIV h = (T) V' =]
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The Hilbert 5ymhol hm, the following fundamental properties:
(3.2) Proposition.
o cen oA/
(ii) [_,m@!% N"Phk
(i) (¥) = 1-¢:
(iv) (¥)0("fr',
o (lp-a)€rand(t)ex

(i) |f(¥): | forallh EK*, then a E KM.

)aisanormfromlheextensionK(\/h)IK.

Proof: (i) and (ii) arc clear from Ihc definition, (iii) follows from (3.1), and
(vi) reformulates the nomlegencrateness of the Hilbert symbol.
If h E K* and x E K @uch that xn - h#-0, then

a-1
x-h@ T - (0 fi"@h
1=0

for some primitive n -th root of unity (. Let d be the greatest divisor of n suct
that y* = h has asolution in K, and let n = dm. Then the extension K (fi)IK
is cyclic of degree m. and the conjugates of_\ - (‘fi are the elements x - (3 f
suchthat j ==1i mod d. We may therefore write

-h= A NKun1dx-(f3).

Hence x" -his anorm from K(Vfi)IK, i.e..

x"—hb

(52

Choosing x = I, h=1- a, and \-= 0, h= -a then yield (v). (iv) finally
follows from

@N\"e(a (N hNt- :h)
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In lhe case K = IR we have n = | or n = 2. Forn = 1 one finds, of
course, (¥-) = 1, and for n = 2 we have
= = ~ant
because (a,IR(V'h)IIR) =1 for b > 0, and= (-1) ani forh < 0.Here

Ihe letter p @ymbolically stands for an infinite place.

Next we determine the Hilbert symbol explicitly in the case where K is
a local field(# IR.,C) whose residue characteristic p doe€y not divide n. We
call thi5 the case of the tame Hilbert symbol. Since 1, S;; nq | one has
11jq - | in that case. First we establish the

(3.3) Lemma. Let(n,p) = landx E K* The extem,ion K(\/.\)IK is
unramified if and only if'x E UK K*

Proof: Let,.= uyn with u E UK, y EK*, sothat K(Vx) = K(O[). Let
k' be the splitting field of the polynomial X" - u mod p over the residue
class field , and let K'IK be the unramified extension with residue class
field k* (@ee chap.1l, 89, p. 173). By Hcnsel's lemma, xn - u splits over K'
into linear factors, so K(::fu) S;; K' is unramified. Assume conversely that

= K (,VX) i5 unramified over K, and let t = 11!, where u e UK and
rr isa prime clement of K, Then vL(vmr') = %vJ.() = € E Z. hence
nir,i.e.. ' € K*n, and thu@ 1. E UKK*". a

Since UK = 1ig-1 X Utlu every unit u e UK has a unique decomposition
u = w(ll)(u)
with (JJ(u) € t.Lg-1 and (u) E Utll, u-= tv(u) mod p. With thi€ notation we

will now prove the

(3.4) Proposition. If(n,p)= | anda,hE K*then
_(a._/)_ wW((-1)"/i; ya-pr1a,

where a=  VK(a), fJ = VK(h).
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Proof: The function
" )lg-)yLL
(a.h) =u)( (-1)"i@

is obviou@ly bilinear (in the multiplicative sen€e). We may therefore assume
that a and hare prime elements: a= Tc, h = -Tc11, u E uk. Since clearly
{ir, -Toy= (L= I,we may restrict to the case a= 11, h = u. Let

y =@and K'=K(y). Then we have
Lru)=w(u)(g-1)/n and . =( -

By (3.3), we see that K'IK is unramified and by chap. IV, (5.7), (rr. K'IK)
is the Frobenius automorphism tp = iuk1k, Consequently,

(U;”J: F e u@m wu)(g-A/=  {rr.u) mod p,
p y

hence = {rr.u). because /.-lg ,i" mapped isomorphically onto k= by

L d O

The proposition <,hows in particular that the Hilbert €ymbol
(LA = w(u)(a-/n

(in the case (n, p) = 1) i€ independent of the choice of the prime element
;. We may therefore put

(€2).=Jr/) for uUEUK,
(@)is the root of unity detcnnined by

(0) = Lg-m mod P

We call it the Legendre symbol, or the n-th power residue symbol. Both
names arc justified by the

(3.5) Proposition. Let(n, p) = | and u E uk. Then one has





(%) =1 <« uisann-th power mod pg |
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Proof: Let ( be a primitive (q - 1)-th root of unity, and let m =g & l..
Then (* is a primitive m-th root of unity, and

G) = wutt=

Fw(u) E pm = ov(u) = (Y

f=r>u =cv(u) = (t Y mod PK ]

It i€ an important, but in general difticulL problem to find explicit formulae
for the Hilbert symbol (¥) also in the case pin. Let u€ look at the case
where 11 =2 and K =:0p- Ifa E :Z2, then(-!)" means

DT =D
where r 16 a rational imeger = a mod 2.
(3.6) Theorem. Letn = 2. Fora,h E i0;, we write

11 =rl,:11", =pAh, a, he Ual,,.

an= ()Y">(")"(h)"
P P P
In particular, onefla\ (PL. = ()¢ wamid EF) = (%), i iga unit.
Jp = 2 ,wdah E I/4, then

(2_/), = (DM,
CJ/ \a

Ifp # 2, then

heV.

Proof: The claim for the case p# 2 isan immediate con€@e4uence of (3.4),
and will be left to the reader. So let p = 2. We put 1J(a) = ﬂl and
f@) = a 1../\n elementary computation shows tha(

11(ala2) = 17(ai) + 11(a2) mod 2 and t(ata2) = E(ai) + t(a2) mod 2.

Thus both sides of the equations we have to prove are ultiplicative a and it
is enough to check the claim for a set of generators ofug/l/?»:_ {5. -1}

i€ such a set. We postpone thi€ for the moment and define (a, h) = (¥)
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We have = 1 if and only if xis a norm from (b(R)I(f2,
+ V.z E Since 5 =4+ 1and 2= 1+ 1, we find that
= 1. wehad (-1, - 1) = L then it would follow that

(-1.x) = 1 for all x, ie., -1 would be a square in 1Q2,, which i€ not the
case. Therefore we have (-1, - 1) = - 1.

We have (2.2) = (2. - 1) = | and (55) = (5, - )= L It remains
therefore to Jetennine = 1 would imply (2,_\) = I for all X,

which is not the case. Hence (2,5) = -1.

By direct verification one sees that the values we ju€pl found coincide with
those of (-1)'1("1, resp. (-If(aJi(hl, in the respective cases.

It remains to show that U\hl Uj, J< generated by {5, - 1}. We <ietU =

_ u(n! —utt By chap. IL (5. 5) exp: 2nz?---+ U(nl j._an isomorphism
for n > I. Since a i+ 2a defines an isomorphi<;m 22Z; -+ 2125, x i +

defines an isomorphi¢m UM ===, Ur' it follows that (1 £ U2 Since
\I, -1,5, -5} is a@y<;tem of representative<; of U/U(l, U/U? is generated
by-land5. a

It is much more difficult to determine the n-th Hilbert symbol in the
general calse. It was discovered only in 1964 by the mathematician Hn.\wi
BNUCK.I N. Since the result has not previously been published in an easily
accessible place, we state it here without proof for the case 11 = PV of odd
residue characteristic p of K.

So let aip* £ K, choose a prime element Jr of K, and let W be the ring
of integer€p of the maximal unramified @ubextension T of K 11Q,, (i.e., the
ring of Witt vectors over the residue class field of K). Then every element
r e K can be written in the form

x ¢ f(rr),
with a Laurent series /(X) E W((X)).
For an arbitrary Laurent serie@ f(X) = L _a Xt E W((X)), let
T
Ip (X) denote the €eries
fRX) =Y af X7,
where 1{! is the Frobenius automorphism of W. Further, let Res(/'dX) E W
denote the re@idue of the differential fdX,
dlog | =
and x —
log fi= Y (=N Y
i=1
A fE I+ pWIXI.
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Now let ( be a primitive n -th root of unity. Then | - ( is a prime
clement of Qy, (0. and thus

for some unit £ of K, where c is the ramification index of K IQp((). Let
1}(X) E W[IXI) be a power serie5 5uch that

F = 13(I),
and let h(X) be the series
hX -€  1e(dXXrvOON” ” . B
() 2 iq Xneop  ZAX e lm =0

With this notation we can now state sruc/<.1vi11s fonnula for the p“-th Hilbert
symbol (:%%f), p = char(K) #- 2.

(3.7) Theorem. 1fJ..,Y EK* and f,K E W((X))@ €uch that f(n) = x and
g(rr) = y. then

e

Where

w(x.y) = Trw 1-0, Resh-(_!_ Iog?d logR- !_log€_!_dlog f P) mod p™.
I f 1 b (S )

For the proof of this theorem, we have to refer to [20] (see al€o
[69) and [1351). eiweknFrR has also deduced an explicit formula for the
case n = 2", but it is much more complicated. A more recent treatment
of the theorem, which also includel- the case n = 2". ha€ been given by
G. Hrniin [69].

It would be interesting to deduce from these fonnulae the following cla€psical
result of niammta [801, A1) and /faw- (5cc 19)) relative to the field

where ( i1> a primitive p™-th root of (p -=f. 2). Puttingn = 1- ( an<l
denoting by S the trace map from <:P,, lo we obtain for the pr -th Hilbert
symbol (¥) of the field <P, the
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(3.8) Proposition. Fora E and h e <tii one hm,
0 ﬂ) — C'W loga Dlogh)/p*
- P
where D logh denotes the fomial logarithmic deriwltive in it of an arbitrary
representation ofh as an integral power series inn with coefficients in Zp.
Fora EU@,\ one has furthermore the two supplementary theorems

5N _  stoga)/p”
@ (%) =¢ :
TN S ) oga)/ pt
® s )=t .

The supplcmentmy theorems (2) and (3) go back to ArTev and Hasst 191.
The formula (1) was proved independently by AHii,'," [10] and Husst 161]
in the case v = 1, and by maawa [80] in general. In the case v = I. for
instance, one can indeed obtain the formulae from BRUCKNt.H's theorem (3.7).
Since

_ 5((”)011 mod p. i=p-1

) and loga= 0 mod p?
Omodp, i-1-1,-1,

one may also inlcrpret the (-exponent in the formulae (1)--{3) as the (p-  I)-
st coefficient of a rr-adic expansion of loga D logh. In this way it appears as

a fonnal residue Res,, --;;f loga D log h. As to the “-upplcmentary theorems.
one ha to define also D log ( = -(-*, Dlogn = rr-1

Exercise 1. For n = 2 the Hilbert symbol ha" the following concrete meaning
(¥ =1 <> ul2+/y"- " =0 ha@a nontrivial -Olution m K.

Exercise 2. Deduce proposition (3.8) from theorem (3.7).
Exercise 3. Let K be a lornl field of characteristic p. let K be it\ “eparable
clo@ure. and let W, (K) he the ring of Witt vectors of length n. wilh the operator

1,0 W,,(3<)....;. W, (K), ppa = Fa - a (€ee chap. IV. §3. exerci€c, 2 and 3). Show
that one has ker(p) = W, (F,)

Excrcir.e 4. Ah@tracl Kummer theory IV.(3.9)} yelds Tor ihe - maximal ahehan
exlcn@ion LI K ot exponent u a ,urJectivc honmmocpl, sm

W, (K) . Hom(G(LIK), Wii(1@'1), 1 = X,





where one ha,

@uch that p@ = (.
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Exercise 5. Deline, for x E W"(K) and a EK*. thesymbol [x.a) E W,,\Wy) by

[r.a) := x,((a.LIK)),
where (, LIK) i€ Ihe nonn rc€idue \ymbol. Show;
(i) xa) = @K()IK)Y -1;, ig EW,(i<) with ,

(i) [r+y.a)=Ix,a)+fv.a).

(iii) I-Lah)=[,1.,a) + [.1h).

(iv) =0 -¢==} a E NkiOIkK(I;)*, where/; E W, (i<) i€ an ekment \Ueh
that

(V[J,a)=OforallaEK* {=:3 1 E,pW,,(K).

(vi) (r.a) =0 for all 1 & W, (K)-¢==}a & K*

Exercise 6. Let k be the reiduc class field of K and n a prune elemcrn @uch that

= K((n)). Let
diK---1.QL1K"  jf*df,

he the rnnonical map to the differential module of K IK (€ee chap. III,* 2, p.200)
For every f E K one hag

4f = frdn,
where i the formal derivative off  11ithe expansion according 1o powers of 7
with m K. Show that for rJ = X_;._., 7' Yd, the residuc

Rescv:=a-1

doe€p not depend on the choice of the prime clement n.

Exercir.e 7. Show that in the ca@cn = 1 the symbol [r.a) i€ given by

[r.a) = Tr@ulfi,

Remark: Su<.:h a tonnula can also be given for n:::: | (P. Koutt 1881).

§ 4. Formal Groups

The mo@t explicit realization of local cla€s field theory we have encoun-

tered for the case of cyclotomic fields over the field i.e.. with the ex-
where (isa p"-th root of unity. notion of formal
group us construct €uch an explicit cyclotomic theory over an ar-

bitrary local field K by introducing a new kind of roots of unity which are
“division points" that do the same for the field K as the p'i-th rooh of unity
do for the field '1JIp-
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(4.1) Definiton. A (1-dirnen.@ional,commutative) formal group overaring o
isa formal power series F (X, Y) E off X, Y]] with the fol/owing properties:

(i) F(X,Y)=X +Y mod deg 2,
(i) FXY) = F(Y.X) ".commutativity”,
(i) F(X.F(Y,2)) = F(F(X, ), 2) "as.rnciativitys-.

From a fonnal group one gets an ordinary group by evaluating in a domain

where |he power series converge. If for instance 0 i<; a complete valuation
ring and p its maximal ideal. then the operation

x+y = F(xy)
i

defines a new structure of abelian group on the set p.

Examples:
1. 1Ga(X,Y) = X + Y (the fonnal additive group).

2. Im(X,y) = X + Y + XY (the fonnal multiplicative group). Since
X+Y+ XY @U+X)(1+Y) -\
we have
wHIl=x+-y+ 1).|
So the new operation fT., is obtained from multiplication via the translation
x f+ x + 1
3. A power series f'(X) = aiX + aX® + E o[[X]J whose first
coefficient a; is a unit admits an “inverse™, i.e., there exi:-.tsa power series
f-i(x) =ai'x + + & oLIX]],
such that f *(,f(X)) = f'(f-1(X)) = X. For every <such power series,
FX,v) & f '(f(X) + (()

is a formal group.

(4.2) Definition. Ahomomorphism/: F > G hetwecntwoforma/groups
i.@apowcrseries f'(X) = a;X +a,X? +* * E o[fX]] such that

F(FCX, Y@ G(9), {(Y)
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In example 3, for instance, the power series f is a homomorphism of the
formal group F to the additive group Ga. It is called the lo;.:arithm of F.

A homomorphism f : F > G i.. anisomorphism if a1 = f(O) isa unit,
i.e., if there isa homomorphism g = /-1. G+ F such that

1(9(X)) @ g(f(X)) @ X.
If the power series f(X) = a,Xx + apx? + satisfies the equation
f(F(X.Y)) = G(f(X), /(Y)), but its coefficients belong to an extension

ring o', then we call this a homomorphism defined over o'. The following
proposition j<,immediately evident.

(4.3) Proposition. The homomorphisms f : F -+ F o(a fonrnil group r
over o form aring Endy(F) in which addition and multiplication are defined
by

UjixHX) @F(f(X),g(X)),  (/og)(X)€ /(9(X))-

(4.4) Definition. A formal o-module is a formal group F over 0 together
with a ring homomo01phism

o0--—-+ Endy(F), af-+ [al,. (X),

8Uch that [a IF(X) = aX mod deg 2.

A homomorphism (over 0' 2 0) between formal o-modules F, G i, a
homomorphiml f : F » G of formal groups (over 0") in the seme of (4.2)
such that

f([a[F(X)) € [alu(/(X)) focall a Ev.

Now let 0 = ok be the valuation ring of a local field K, and write
g = (oK : PK). We consider the following special formal OK-modules.

(4.5) Definition. A Lubin-Tate module over OK for the prime element n is
a formal oK -module F such that

[N]F(X) = X<f mod n.
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Thi€ definition reflects once more the dominating principle of class field
theory, to the effect that prime clements correspond to Frobenius elements. In
fact, if we reduce the coefficients of some fonnal o-module F modulo rr, we
obtain a formal group F(X. Y) over the residue cla@€ field  The reduction
mod n of [rrIF(X) is an endomorphism of F. But on other hand,
f(X) = X" is clearly an endomorphism of F. its Frohenius endomorphism.
Thu€ F i€ a Lubin-Tate module if the endomorphi€@m defined by a prime
element rr gives via reduction the Frobenius endomorphism of F.

Example: The fonnal multiplicative group Gm i€ a formal Zp-module with
respect to the mapping

7y - Endz(G.). uc [alc.(X) @@+ X)" - 16 | (X

:Guuis a Lubin-Tate module for the prime element p becau<;e

[ph;,..(X) =(1+ X)ft- 1= xa mod p.

The following theorem gives a complete and explicit overall view of the
totality of all Lubin-Tate modules. Let e(X). C(X) E ok I[X]I be Lubin-Tate
series for the prime element ;r of K, and let

F,(X.Y) EoK[[X.Y Il and Jal,c,(X) E vdIX]]

(aE OK) be the power series (uniquely determined according to (2.2)) such
thal

F.(X.Y) @ X+ Y moddeg2. e(F,(X. YJ]) @ F.(eX).e(Y)).
[<.], c.(X) € uX mod deg 2. e(La], 0(X)) € [al,c(c(XJ)
If e(X) = C(X) we simply write [a],.,.;(X) = [a]..(X).
(4.6) Theorem. (i) The Luhill-Talc module. filr st are precisely the .- cries
F,.(X,Y), with tile fomla/ OK -module structure given by

0k —> Endo, (F).  ar— lal.(X)

(ii) For every a £ OK tile power series [al,,.c(X) is a homomorphism
La,_c: Fr—+ F,

of formal o-modulcs, and it i€ an i.morphism ifa is a unit.
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Proof: If F is any Luhin~Tate module, then e(X) := [MF(X) E £,
and F = F, became e(F(X, Y)) = F(c(X).e(Y)). and because of the
uniqueness statement of (2.2). For the other claims of the theorem one has
to show the following formulae.
0 F.(XY) € F.(Y.X),
(2) F.(X. ci.(Y, 2)) € F.(F.(X.Y). 23,
(3) [aL.. .(Fa(X, Y)J @ F..([aL.. a(X).[a],.(YJJ,
(4) [a+ hJc.o(X) € F,([u]....(X).[hL[.. .(X)).
(5)[ah1.J(X) @ [al, ,([hi, i(X)J.
(6) Lr[.-(X) € c(XJ.
(1) and (2) @how that Fe is a fonnal group. (3), (4), and (5) Show that
OK.._ EndoK (Fe), al--—-">- [al,,

is a homomorphi@m of rings, i.e., that F,, b a formal OK-module, and that
[ale.<" is a homomorphi5m of formal OK-module5 from Fe to F,. Finally,
(6) show€p that F,, is a Lubin-Tate module.

The proof5 of these formulae all follow the same pattern. One checks
that both sides of each fonnula are solutions of the same problem of (2.2).
and then deduces their equality from the uniqueness 5talcment. In (6) for

instance, both power series commence with the linear fonn rr X and satisfy
the condition e([rrl,.(X)) = rrrl,(e(X)), resp. e(e(X)) = e(f(X)). [m]

Exercise I. Endy(G,,) consist\ of all ax such that a € «

Exercise 2. Let R be acommutalive Q-algcbra. Then for every formal group F(X, Y)
over R, there cxlstqa unique isomorphism

logy : F------: >-G,,
such 1hal log; (X) = X mod deg 2. the logarithm of F.

Hint: Let Fy = 3#/dY. Differentialing /() (X,¥),Z) = F(X.F(¥,2)) yield
=1 moddeg . Let y(X) =14 3% a,X" € R[[X]] be the power series
that ¥ (X)F\(X.0) = L. Then log, (X) = X + 3_7¥ | “ X" does what we wanl.

: g
Exercise 3. log,:_.,,(X) = gl(—l) o = log(l + X).

Exercise 4. Let r a prime element of the local lield K, and le! f(X) =
X+ X" + .. Then

F(X.Y)=d 1(/(XI+F(Y)), [all-(X)=/ (<1/*(X)), aEOK,
define\ a Lubin-Tt-1tc module with logaritim log ,=
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Exercise 5. Two Lubin-Tate module€p over the valuat10n ring 0 ot a local field K,
but for different prnne clement€ :rr and ff. are never isomorphic.

Exercise 6. Two Luhm-Tatc modules F,, and Fe for pnmc clcmem :rr and H alway€
become H,omorphic o\-er where K 1 the eomplellon of the maximal unramificd
extension i!K.

Hint: The power @erie€ Hof (2.3) yields an isomorphl€m H : h,-

§5. Generalized Cyclotomic Theory

Formal groups are relevant for local class field theory in that they allow
us to construct a analogue of the theory of the pn-th cyclotomic
field :QIp(() over  with its fundamental isomorphism

G(Qy0IQ,) — @/P'D)

(see chap. Il (7.13)), replacing ([JP by an arbitrary local ground field K.
The formal groups furnish a generalization of the notion of pn-lh root of
unity, and provide an explicit version of the local reciprocity law in the
corresponding extensions.

A fonnal OK-module gives rise to an ordinary OK-module if we read
the power series over a domain in which they converge. We now choose for
this the maximal ideal P of the valuation ring of the algebraic clo@ure K of
the given local field K. If G(X1, X,,) E odfX;, . Xnll is a power
<;eries with con<;tant coefficient 0, and if t;, .w E jj. then the series
G(.ta ,xn) converges in the complete field K(x1, ..... t,1) to an element
in jj. From the definition of the formal o-modulcs and their homomorphism€
we therefore obtain immediately the

(5.1) Proposition. Let F be a formal ok -module. Then the .€er P with the
operatiom

~+y=F(\,}) and a-x=laJ,,(x),
1

X,y E jj,a E OK, isanCJK -module in the usual sense. We denote it by PF-
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If f:F —+ (0 isa homomorphism (isomorphism) of fonnal OK-modules,
then

isa homomorphism (bomorphism) of ordinary OK-modules.
The opcralions in Pr, and particularly scalar multiplication o « x =
[a].. (x), must of course nol be confused with the usual operation€ in the field

We now consider a Lubin-Tate module F for the prime element n of OK.
We define the group of n"-division points by

Flny={hepr|n"+n =0} =ker([x"|¢)

This is an OK-module, and an oK/TrnOK-module because it i€ killed
by n"oK.

(5.2) Proposition. F(11) i.\;1freeoK/TrnOK-moduleofrnnk I.

Proof: An isomorphism f' F -+ (0 of Lubin-Tate module€ obviously
induce€ isomorphis5ms f « IJF —+ Pc and f F(n) € G(n) of OK-
modules. By (4.6), Lubin-Tate modules for the same prime element ;r are all
i€omorphic. We may therefore assume that F = Fe, with e(X) = X'l +n X =
InIF(X). F(n) then consists of the q" zeroes of the iterated polynomial
e"(X) = (eo ++0e€)(X) = Ln"J,. (X), which is ea@ily shown, by induction
onn, to be separable. Now if A. e F(11) "- F(n - 1), then

OK------- +F(n). Of ------i fa*An,

is a homomorphi@m of OK-modules with kernel n"oK. It induces a bijective
homomorphism OK /n"vK -+ F(n) because both sides arc of order q". fJ

(5.3) Corollary. A.¢.mciatingo f-+ l0]JF we obtain canonical isomorphism.€

ox/a"0x — Bdoy (F(m) and Ug /UL —> Autoy (F(n))

Proof: The map on the left is an isomorphism since vk /nnoK € F(n)
and End,K(0K/HNnOK) = oK/n"oK. The one on the right is obtained by
taking the unit groups of these rings. D
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Given a Lubin-Tate module F for the prime element rr, we now define
the field of 1r-division points hy

L., © K(Fin)).

Since F(n) S; F(11 + 1) we get a tower of fields

Ks; L1 S;L2 S;... S;Lir:= e lLn*
11

These licld€ arc also called the Lubin-Tate extensions. They only depend
on the prime element rr, not on the Lubin-Tate module F. For if G i@
another Luhin-Tate module for n, then by (4.6), there is an i€omorphism
j i F—+ G. f E CIKI(X]I <;uch that G(11) = f(F(n)) S; K(F(n)), and
hence K(G(n)) = K(F(n)). If Fis the Lubin-Tate module F,. belonging to
a Lubin-Tale polynomial e(X) E Err, then e(X) = [rr 1,.-(X) and L.u IK is the
splitting field of the 11-fold iteration

J(X) = (0 o0e)(X)= Irrt,~(X).

Example: If ok = Zy, and F is the Lubin-Tate module Gm, then
) =M, (0 = L+ X7 — |

So Gm(n) consists of the elements ( - 1. where ( varies over the pu-th roots
of unity. Ln IK istherefore the pn-th cyclotomic extension iJ:p(/Lp" )11Qy.. The
following theorem shows the complete analogy of Lubin-Tate extenyions with
cyclotomic fields.

(5.4) Theorem. L,IK isatotally ramified abelian extension ofdcgreeq"-(g-
i) with G;ilois group

G(l.441K);: cutci/((F(n)) s UK Jut,
i.e., forevery a E G(lanIK) there is a unique cfass u mod U i, with 1 e UK
such lhal

A'= ]F(A) for A E F(n).

Fwthermore the following istrue: let F bethe Lubin-Tate module F,, as€pociated
10 the polynomial e(X) E Err,and let).n E F(n) -- F(n - I). Then A, isa
primeclementofl,,, i.e., L;; = K(A,y and

<Hw= 0 = XIff3-I(g-1) +-+-+Jr E OK[XI
n cn-1(X)

isitsminimal polynomial. In particular one has NL, ik (-An) =Jr.
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Proof: If

e(X) = X'l +rr(@" pxq-1+--s+aX2)+rrX
is a Lubin-Tate polynomial, then

en(X)

<An(X) = en 1)
=en-1(qif-l+rr(ag-1e111(X)1 2+ +az2c"-1(x) +rr

is an Eisenstein polynomial of degree gn-(q - 1. If Fis the Luhin-Tate
module associated toe, and A,, E F(n) "- F(n- 1), then ).,, is clearly a zero

of this Eisenstein polynomial, and is therefore a prime element of the totally
ramified extension K(A,)IK of degree q11-1(q - 1). Each a E G(LIK)

induces an automorphism of F(n). We therefore obtain a homomorphism
G(Ly|K) — Auto (Fim) = UgjUl.
Il b injective because L,, is generated by F(n), and it i€ surjective because
#G(LalK) 2 [KGu) 1 K] =¢" (g = 1) = #Ux /UL

This proves the theorem. 1

Generalizing the explicit norm residue "ymbol of the cyclotomic fields
(see (2.4)), we obtain the following explicit formula for the
©ymbol of the Lubin-Tate extemions.

(5.5) Theorem. For the field L,IK of rr'-division points and for a
un"K(a) EK*.u E UK, one has

(a, LnIK)A = [u 1JF(A), AE F(n).

Proof: The proof is the @amc a that of (2.4). Let a E G(LnlK) be the
automorphism <such that

A'=  fu-Y]F(A), A E F(n).

Let Ci be an element in Frob(L.;IK) such that a- ;::C OIL,, a.!'d 1fKJO) =1.We
view Ci as an automorphi"m of the completion L,, = L,,K of L,,. Let E he
the fixed field of 0. Since = |, EIK is totally ramified. It has
degree gt \Ij- 1J because =k and f = EK= L,,. Consequently
IE, K@ IL,, K¢ fl,,, K].
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Now let e E En, e E Err be Lubin-Tate series over ok, where = urf,
and let F = F,;. By (2.3), there exi&Is a power series 0(X) =EX+ E
OR[[X]]. with EE UK, such that

0-P = 0 o[ulF and O0-P:iC = eo0 (tp= tpK}.

Let An & F(n) "-F(n- ).\, isa prime element of L,,- and

i5 a prime element of E because
rrf = 0<f(A€@) = 0q'( [u—lJrCAn)) = O(An) = rrr;.

Since ei(0(An)) = (rf (€™(A,1)) = 0 for i = n, and# Ofori = n- 1,
we have Jr3; E F,,(n) "- F,,(n - 1). Hence E = K(rrr;) is the field of rrn-
division points of Fe, and Nr;1K(-nr;) = s = urf by (5.4). Since rr =
NLn1d-An) E N1.,,wL€, we get

rLAJIK(@) = Nr:1K(-nr;) = ar a= 11 tnod NL,1KL;.
and thw,

@ LalK) = (O LK), Lol K) = (u, Lo |K) =0 O

(5.6) Corollary. Thefield LnIK ofrr*-divi.<,ion poinls i1> the class field relative
tothegroup(rr) x Utls; k=

Proof: Fora= urr'K(a) we have

H11-1JF(A)=A forallAEF(n)

3 [u-13, = iaf(n) -e=3 11 EUYal)-<==} a E (1) XUva).
[m]

aEN1 wL;-<==}(a,LnlIK)=|

For the maximal abelian extension K" IK, thb give& the following
generalization of the local Kronecker-Weber theorem (1.9):
(5.7) Corollary. The maximal abelian extension of K is the compo. @ite
K"h="f<Lrr,
where Ln is /he union LJQI Ln of the fields L,, ofrrn-division point.€.
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Proof: Let LIK be a finite abelian extension. Then we have rrl £ N1.JKL*
for suitable f. Since NLIKL* is open in K*, and since the u ,t fomla basis
of neighbourhoods of I, we have (nf) xv¥2') £ NL1KL* for a suitable
n. Hence L is contained in the class field of the group (rl) x ul =

((rr) x U3t n ((rrf) x UK). The class field of (Jr) x uini is Ly and that
of (;rf) X UK js the unramified extension Kl of degree f. It follow<, that

LEK1L,,EKLrr=K(lh. n

Exercife |.Let F =F, bethe Lubin-Tale module for the Lubin-Tate eE
with the endomorphi@me [a]= la],. Let S = oKIIX]l and S¥ = 1g £ g(0) E

ow:
(i) If g ES 1sa power @eries @uch that g(F(l)) = 0, then li is divi@ihle by [Jr], ie.
90 =[n](XIh(X), h(x) ES.
(ii) Let g E S bea power series such that

g(XtA)=g(X) forall AEF(l),

where we write tX A= F(X,A). Then there exi@t\ a umdue power series h(X) in

S such that
g =hon.

Exercise 2. If h(X) i€ a power gerie€ in S, then the power @cries
h1e)= N hex+a)
S0l 1 F

abo belongs to S. and one has h;(X ; A)= h,(X) fur all A E /<(1).

Exercise 3, Let N(h Es be the power €erie€p (uniduely detennined by excn:i€c |
and cxerci€e 2) qucl

Nyorni= 11 hx+a)
AQl il 1

Thi; mapping N : S --- S jq called Coleman's norm operator. Show:

@M N(h1h2) = N(h)N(h!-

(i) N(I1J = h mod p.

(ti)) he X:S=fori".0= N(h)E XS*

(iv) h:ee: 1 mod p' fori c:: 1==} N(h) = | mod pi~t

(v) For the operators N'(h) = h, N/)(h) = N(N" : (h)), one ha@
N*(h),,[rI= h(XtA), f::_O.

(vi) IfhE XS, i 0 then N"-X(h)/N"(h) Es. and
N"+1{h}€ N"(h) mud p"-. #::0.
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Exercise 4. Let AE F(n +1,) F(n), n:: 0.and A, = I 4) € FUt 1) 10Tu =
iz;; n. Then A, is;;, prime clement of the Lubin-Tate extension' 1 = K(F(+1).
and L., = 0dA, | i the valuation ring of L,--,. with maximal ¢l Pisi = 4z
Show:
lei f:l, En"  'pi0,+1, 0:Si:S:n. Then there exist@ a power serie\ li(x) ES @ueh
that
h(A)=fl, for 0.5: €n.

iint: Write f; = m" ‘Re/ti(hi). with A;(X) € ¢}X) and put. Tor v = 1 =)
(X) = ["* '/t~ ). Then & = 30, iz is a solution.
xercise 5. Let o € Fin+ 1) ~ Fnyand &; = [z" '}(2), 0 =i <n. 1 For every
e Uy, there exists a power series A(X) € o{[X]] such that

Njpqan = h(.) for O:
where N,,, i€ the norm from L,,: to Lo

lint: Write & = /i{}), (X)) & olX|, and put sz = N"(#1) € D7, DNOW ulat
= Ny () — (i) € 7" po;.1. Then by exercise 4 there is a
2(X) € o[{X1} such that B = Aa(h;) 0 =i < n. Show that &A= h> +. work\,

Remark: The \Olutions ofthele excrciles arc di\CU@€pcd in detail 1n 179], 5.2.

§6. Higher Ramification Groups

Conr,idering the homomorphism
JLIK), K' - G(LIK)

defined for an abclian extension tIK of local llelds by the nom1 re:,1due
©@ymbol, it is striking that both groups are equipped with a canonical filtration:
in the group K* on the left we have the descending chain

K oUxk =UL 20 20

of higher unit group:, Utl, and on the right there i:- the der,cending chain
(Gl G(l,IK) 2 GO(LIK) 2 G'(LIKI 2 G*(1,IKI 2 +

of ramification 1;roup € G*(LI K) in the upper numbering (5ee chap. I1, S 10).
The latter arose from the ramification groups in the Inv.er numbering
C,(LIK)=\aEG(LIK)I1:L (aa-a)€@i+l forall aEth\
via the strictly increa:-ing function
y d

'ILIK(S) = 1, E_G_O )
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by the rule

GULIK) = Gy n(LIK).
where ifr is the inverse function of T/. We will now prove the remarkable
arithmetic fact that the norm residue symbol ( . LIK) relates hoth filtratiom.
(*)and(**) in a precise way. To this end we determine (generalizing chap. Il,
§ 10, exercise 1) the higher ramification groups of the I,ubin-Tate extensions.

(6.1) Proposition, Let/,;I K be /he field ofrr" -divi. @ion point@ofa Lubin-Tate
module for the prime element ir. Then

G,(L,,IK) =G(L11ILd for I-l:::Si Sgt - 1

Proof: By (5.4) and (5.5), the norm residue symbol gives an isomorphi€m
UKJui<_"J----+ G(LKIK) for every k. Hence G(LnILt) = W;_ "1.L.IK). We
therefore have to show that

G1(L11K) = (UfLinik) for q@-tiit/ - 1
Let er e Gy(LnIK) and er= (u»J LnIK). Then we have nece@sarily
u E U@ because (L,.IK): UKJut' €  G(L.IK) maps the p-Sylow

subgroup u)/l;ul;l onto the p-Sylow @ubgroup Gl(L,,IK) of G(L,IK).
Letu= 1+t ee [h. and A E F(n)" F(n-1). Then Ai€ a prime
element of Ln and from (5.4) we get that
Ic" @ [ul, (‘cl€ FQ., Im™[F('c))
If m::_1, then er= I. so that - A)= o00. If m <11, then Ay, =
[rr"‘J,, (A) is a prime element and therefore also (Frr"J,.(A) =
A@ LnlL,-m is totally ramified of degree g'* we may write
= FoA'l" for <jome cio E llIt,,. Since 1-(X.0) = X, F(O,Y) = Y,
we have F(X.Y) = X +Y +XYG(X.Y) with G(X.Y) E oK[[X. Y]]. Thu@
Ac, - ). = FO..t:0),'1") - A= FoA'l'' +aA'fm+i, aEo1.,,

ie, W

ILLIK (er) := 1., (A -~ A)= Ig™, ifm <,

0o, Jfm:'_n
By chap. Il, §10. we have Gi(LulK) = {a E G(LnIK) I it rrIK(r:r) :
i + 1} Now let ::Si = L Ifu E u_"1 then m::: k.
iL,,1K(a) :=: t/ =t + |,and w a E G,(LnIK). This proves the inclusion
(U;_"l.LnIK) S, G,(L,,IK). If conversely rr E G,(LnIK) and a#- |, then
iL,1da) = gt > i -1 ie,m:.k Conéequently u E Uﬂ, and this
shows the inclusion G,(L,,IK) £ Wfl,LnIK). a
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From this proposition we get the following result, which may be consid-
ered the main theorem of higher ramification theory.

(6.2) Theorem. If LIK is a finite abc/ian extemion, then the norm residue
1,ymbo/
,LIK), K' - G(LIK)

maps the group UtZonto the group Gu(L IK), for n 2:: 0.

Proof: We may assume that /,IK is totally ramified. f<or if LCIK is
the maximal unramificd subextemion of LI K, then we have on the one
hand cn(LIK) = Gn(LILO) because ifruljK(s) = € and Uthw(s) =
if.rlat.o(i/rulw(€p)) = ifrLllo(s) (see chap.ll, (10.8)). On the other hand, by
chap. IV, (6.4), and chap.V, (1.2), we have

ve7LLLY = (NutwviztLiky = (uth.Lik).

sowe may replace LIK by Lo,

If now LIK is totally ramified and TcL is a prime element of/,, then
n = NLK(IrL) is a prime element of Kand () x U;;"1 @ NLIKU form
sufficiently big. Therefore LIK is contained in the class field of (rr) x U,
which, by (5.6), is equal to the held Lm of nm-division points of some Lubin-
Tate module for rr. In view of chap. Il, (10.9), and chap. IV, (6.4), we may
even assume that L = Lm, By (6.1), the norm residue !,ymbol maps the
group Uy  onto the group

G(LmILn) =G,(LmIK) for gn- _si _:sqll- I
But we have (see chap. Il, § 10)
Y/IK(@n- 1) = (171 + - + @q"-d
Ro
WithR1 =#G, (LIK)=#G(L.:.1Ln)=(gm *-gn-1)(g-1)forgn * _:si

:;.yield:;. DLIK (9" -1) = nand thu:;. Wijt.1.IK) = G,,.-1(LIK) =
[m]

Higher ramification groups G*(LI K) were introduced for arbitrary real
numbers / 2:. -1.  Thus we may ask for which numbers they change. We
call these numbers the lump € ot the filtration {G*(L IK)/; , of G(L IK). In
other words, t isa jump if for all E > 0, one has

GILIK) £ G K]
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(6.3) Proposition (IIA\SI: -A11r). Forafinite abelian exten.€ion LIK, the jumps
of the filtration /G(L IK)},-_; ofG(L IK) are rntional integers.

Proof: As in the proof of (6.2), we may assume (since G*(LIK)
G(LI1.% that LIK is totally ramified and contained in a Lubin-Tate
extension Ly, IK. If nowt isa jump of {G*(L IK)}. then by chap. Il (10.9),
t is also a jump of {G*(Lm IK)}. Since by (6.1), the jump5 of {Gv(Lm IK))

arethe number5gn - I. for n = 0, .. ,m - | (@ = 2 isan Ois
not a jump), the jumps of {G*(L,,,IK)} are the numbers -1) =n
forn=(0_ m- L D

The theorem of HASSE-Aki' has an important application to Artin L-series,
which we will study in chap. VIl (see chap. Vil, (11.4)).





Chapter VI
Global Class Field Theory

§ 1. Ideles and Idele Classes

The r61c held in local class field theory by the multiplicative group of the
base lldd is taken in global class field theory by the idele class group. The
notion of idele is a modification of the notion of ideal. It was introduced
by the French mathematician cLwir: cHulaLyy (1909-1984) with a view
to providing a suilable basis for the important local-to-global principle, i.e.,
for the principle which reduces problems concerning a number field K to
analogous problems for the various completions kp. c@vaii1 v used the tcnn
“ideal clement”, which was abbreviated as id. el.

An adele of K - this curious expression, which has the strc,€ on the
second syllable, is derived from the original term "additive idele” - isa family
a= (ap)
of elements Up E KP where p runs Ihrough all primes of K, and uyp is integral

in Kp for almost all p. The adClcs form a ring, which is denoted by

AkelK,.
P

Addition and multiplication are defined componentwise. This kind of producl
is called the "restricted product” of the Kp with respect to the 5ubring€
Op&  Kp,

The idele group of K is defined to be the unit group

Thus an idele i€ a family

of elements up EK; where isa unit in the ring op of integers of Ky, for
almost all p. Inanalogy with we write the idele group as the restricted
product
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with respect to the unit groups Oj. For every finite set of primes S, Ik
contains the mbgroup
1:=TT K; x TTUp
pes pes

of S-ideles. where lip = K; for p infinite complex, and 1/1;= IR*@ for p
il te real. One clearly has

1k =UI},
A
if S varies over all finite sets of primes of K.

The inclusions K <; Kp allow u€ to define the diagonal embedding
K*--a=+ 1K,

which associates to a E K* the idelc a Eh whose p-th component is the element
a in Kp. We thus view K* asa subgroup of IK and we call the elements
or K* inh principal ideles. The intersection

Ks=K*nJj
consists of the numbers a E K* which are unih at all primes p't. S, pf oc,
and which are positive in Ki; = R. for all real infinite places p ,j. S. They
are called S-units. In particular, for the set $"° of infinite places, Ks_,, is the

unit group OK of nk. We get the following generalization of Dirichlet's unit
theorem.

(1.1) Proposition. If S contains all infinite place. €, then the homomorphism
=>:K'-, n!Fc. ic(aJ@(loglalp)pcse
pE.T

has kernel p(K ), and its im:1ge is a complete lattice in the (s-1)-dimensional
tr.ice-zero space H = \ (xp) E npecY IR 1 LP'=S' rp =0), \ =#S.

Proof: For the set S,...., = /p loo}, this is the claim of chap. I, (7.1) and (7.3).

Let Sf = S" Seic, and let J(S1) be the subgroup of JK generated by
the prime ideals p E S, Associating to every a E Ks the principal ideal

ia = (a) EJ(Si), we obtain the commutative diagram

I _.0K v ke e J(S1)
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wilh exact rows. The map A" on the right is given by

I"(TT p) @- TT 5 logli(p)
peciil piSL
(obr,erve that ki|p = 1JI(p)-,,,,ral), and maps J(Si) isomorphically onto the
complete laUice spanned by the vectors

ep€(o. ,0.1ogJi(p),0. ,0),

forp E S1. It follows that ker(A) = ker(A') = JL(K). and we obtain the exact
sequence

0=t iM(),..}) -+ iM(A) @  im(A").

where the groups on the left and on the right are lattices. This implies lhat
the group in the middle is also a lallice. For if x E im(A).. and U is a
neighbourhood of i(x) which contains no other point of im(A"), then + 1 (W)
contains the cm.et x +im(A’), and no Olhcr.. Il is discrete since im(A’) is
discrete.

For every p E Sy, if h is the class number of K, then p" belong€ to i(K5).
ie.,

J(S11 S i(K .Y S I(SH).

The group5 on the left and on the right have rank #S1, hence so docs i(K5).
In the sequence(*), the image of i therefore has rank #S,,and the kernel has

rank . I. Hence im(A) isa lattice of rank ... — A 4 = I. Itliesin
the (#5-1)-dimensional trace-zero space H, <,incc np<c:i lalp= TIP lalp = |
fora EK-\. m]

(1.2) Definition. The clements of the subgroup K * of Ik are called principal
idftles and the quotiem group

CK= IK/K*
is called the idf!le class group of K.

The relation between the ideal cla55 group Cf k and the idele class group
CK i@ as follows. There is a €urjective homomorphism

() IK —+ UK, ai- (@)= n p"po-rl
e
from the idele group /k lo the ideal group .IK. Its kernel is
1,0, = n K; x n Up.

X prexs
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Ilinduces a sur:jcctive homomorphism

with kernel tf"' K*/K*.We may also consider the surjective homomorphism

h -+ 1(0). @i+ TTivpop.
P

onto the replete ideal group J(0). Its kernel is
1 = {(op) € Ix | letglp =1 for all p|

(5cc chap. 111, § 1). It takes principal idelcs to replete principal ideab and
induces a wr:jcctive homomorphism

CK --+ Pic(O)

onto the replete ideal cla"s group, with kernel If K*/ Ke+. We therefore have
the

(1.3) Proposition. CfK € hJffC<.K* andPic(V) € hJ!fK*.

In contrast to the ideal cla% group, the idele class group is not tinite. But
the llnitcncss of the fonner is reflected in terms of the latter as follows.

(1.4) Proposition. h = tK K*, ie,CK = tk K* /K* it S is a suniciently
big finite set of places of K.

Proof: Letni. .nli be ideals representing the h classes of Jk /PK. They
are composed of a finite number of prime ideals p 1, j:155. Now if S isany
finite set of places containing these prime, and the places at inlinity, then one
has IK = IKK*,

In order to sec thi5, we use the isomorphism I« /1],.,, € Jx Ifa € ik
then the corresponding ideal (a) = TTpt-x p"p("p* belongs to some cla" n, PK.
i.e., (@)= ny(a) for some principal ideal (a). The idele a'= cu,-* is mapped
by/k --+h tothe ideal m = npj.x i.voee). Since the prime ideals occurring
in a, lie in S, we have Vp(a®) = 0. i.e., a@ E Up for all p 'f. S. Hence
a= aa-!EtJ:.andthusa E ]K*. O
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The idele group come5 equipped with a canonical topology. A hasic
system of neighbourhoods of | E /k i5 given by the I>ets
nwpxTTUpE:;;IK,
P=5 ps
where S run!> through the finite sets of places of K which contain all ploc,,
and W pi; K; isa ba:;,ic system of neighbourhoods of | E K;. The group:;, UP
are compact for pf/. S. Therefore the same is true of the group Tipis Up, If
the Wp, for ploc, are bounded, then npes Wp x npf~.i Up i!> a neighbourhood
of 1in 1K whose closure is compact. Therefore / K is a locally compact
topological group.

(1.5) Proposition. K* i.€ a discrete. and therefore closed. subgroup of!k.
Proof: It isenough to show that | E IK has a neighbourhood which contains
no other principal idele besides 1.

U={ael| legly=1forpfoo, lay— 1], <1 for ploo} |

is such a neighbourhood. For if we had a principal idC!c x E U different from
1, then we get the contradiction

1 Nix- e Nix-11, Nix- 1,
P p>x, P
<N Ix-11,s nm,n{lxl,.l) 1.
Ptx, PtN-

That the subgroup i€ closed follows for a completely general rea”on: :;,mce
w1, ty-' is continuous, there b a neighbourhood V of | such that
i; U. Forevery y E /k, the neighbourhood yV then contains at most

one x EK€ Indeed, from x; = yv1, x2 = yvo EK*, with 1, -1- xo.

deduce:-. x;X2" = V1i,;1 EU, a contradiction. D

Al> K* i!> closed in /K, the fact that /K is a locally compact Hausdorff
topological group carries over to the idele class group CK = IK/ K*. For
any idClc a = (ap) E h. it!> class in CK will he denoted by [a]. We detinc
the absolute norm of a to be the real number

\J1(a) = TTup)IpUip) = n larlP1.
, .
If 1 E K* i5 a principal idCle, then we find by chap. Ill, (1.3), that
11(x) =np IrIpi = 1. We thu:-. have a COillinuous homomorphism

11 CK ---+
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It b related to the absolute norm on the replete Picard group Pie (0) via lhe
commutative diagram

Ce —2 R*

Pic(®) —2 Ril

Here the arrow

CKeneneet PiC(8)
i€ induced by the continuous surjective homomorphi<sm
([P T(o) JRCTo | — + TTP"pic>pl,
P
with kernel
tZ =1 (ap) Eh | lap Ip = | for all p}

A,; to the kernel C ofl)'t: CK--+ IR+, we obtain, in analogy with chap. IIl,
(1.14), the following important theorem. It reflects the finiteness of the unit
rank of K as well as the finitcncs” of the cla€p,; number.

(1.6) Theorem. The group Ct ={la] ECK | J1([a]) = 1) is compact.

Proof: The claim concerning the commutative exact diagram

[T () Cp— + Pic(0) —-eeee + R et |

will be reduced to the compactness of the group Pic(8)°. which wa€
proved in chap. Ill, (1.14). The kernel of the vertical arrow in the middle

i€ the group I@K*/K* = tfjif N K* where we have /€ = TIP 11,
1it={a11E Kp | =1} and If n K* = p(K) by chap.lll. (1.9).
This kernel is compact. We obtain an exact €equence

|-====t tfK*/K*-=-=-+ CY-----+ Pic(i5)° +

of continuom homomorphi5m:-.. Since Pie (0)° is compact, and the same
i€ true for the fibres of the mapping -+ Pic(0)° (they arc cosets, all
homeomorphic to tfK*/K ). hence so J
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The idele clas5 group CK plays a 5imilar ré1c for the algebraic number
field K as the multiplicative group K; does for a p-adic number field Kp.
It comes equipped with a collection of canonical subgroups which are to be
viewed as analogues of the higher unit groups uinJ = | + pn of a p-adic
number field Kp. Instead of pn, we take any integral ideal m = TTP ,,, p™*
We may also write it as a replete ideal

with 1lp = 0 for ploc, and we treat it in what follow5 a€»a module of K. For
every place pof K we put U@OI = up, and

1+u"e, ifpjcc,
uinpd := IR:C K;, if pisreal,

1 =K;, if p is complex,
fornp > 0. Given ap € K; we write

@y =1 mod p" > a, e UM

For a finite prime p and np > 0 thi€ means the usual congruence; for a
real place. it symbolize€ positivity. and for a complex place it i€ the empty
condition.

(1,7) Definition. The group
CP=IFK /K",
fonncd from the idC/c group

tK':TT uinvi,
u

i.€ called the congruence subgroup mod m, and the quotient group CK ;€T
i@ called the ray class group mod m.

Remark: This definition of the ray class group doe€ correspond to the classical
one, as given (in the ideal-theoretic vergpion) for instance in Hasse\
+'Zahlhericht" [53]. It differs from those found in modern textbooks, and also
from that given in [107] by the author: in the present hook, the components
ap of ideles a in 1JP are al\\-ays positive at all real places p, so we have here
fewer congruence subgroups than in the other text€y. Thi€ choice does not only
@implify maucr€. Mot of all, it wa€ made @ub@lantially bccaugpc of the choice
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of the canonical metric (, ) on the Minkowski :-pace Kjr..(see chap. |, §5).
In fact. we saw in chap. Ill, §3, that thi:- choice force:- the extem.ion ICIIR. to
be unramificd. We will explain in §6 below how tu interpret this situation,
and how to reconcile it with the definition of ray classes in other texts.

The significance of the congruence rnbgroup1> lie:- in that they provide an
overview over all clo€cd ,;,ubgroupl> of lInite index in CK. More precisely,
we have the

(1.8) Proposition. The closed subgroups of finite index of CK arc precisely
those subgroups that contain ;:1 congruence subgroup CK_.

Proof: CK_ i- open in CK because If,;’ = npuillp) is open in IK,
1I(" i contained in the group ();_"-- = Tiplex. K; X Tipt-x, Up, and since
(CK: 1J"™"K*/K*) =#CfK = h <cc.the index
(CK: CfQ= h(li;"-'K € I;'K*) :S h(lt )
=hTI (Up: u;"Pl) TI (K;: Ué“vl)
P, pXi

i:- finite. Being the complement of the nontrivial open cosets, which are finite
in number, CI( is closed of finite index. Consequently, every group
containing is also closed of finite index. for it i5 the union of finitely many
co@ets

Conversely, let }/ be an arbitrary closed subgroup of finite index. Then
Al i€ also open. being the complement of a finite number of clo€ed col>ch.
Thu the preimage .| of.Vinh isalso open. and it thus contains a @ub:-ct

of the form
weN.w x NU,.
pecs pis

where S is a finite 5et of places of K containing the inlinite one€.
and Wp i1, an open neighbourhood of | E K;. If p E finite,
we are liable tu choose Wp = u;"P”, because the group€ < X;
form a ba@ic system of neighbourhood@ of | E K;. If p E i5 real,
we may choose Wp <;; IR... The open @ct WP will then generate the
group IR... resp. K; in the caSe of a complex place p. The €ubgroup of .|
generated by W is therefore of the form /I(, <,0 ./1./ contain> the congruence
subgroup C/t P
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The ray cla5s groups can be given the following purely ideal-theoretic
dcScription. Let Jf( be the group of all fractional ideals relatively prime tom,
and let Pf( be the group of all principal ideals (a) E PK such that

a=1mod m and a totally positive.
The latter condition means thal. for every real embedding K € R, a tum
out to be positive. The congruence a — | mod m means that a is the 4uoticnt
h/c of two intcw'n, relatively prime to m such that h =( mod m. This
i€ tantamount to saying that a = | mod p"P in Kp, i, a E ui"P1 for
all plm = npt-x,P""- We put

cry =Jg/Pp.

We then have the

(1.9) Proposition. The /10momorphi.@m
(0 ):IKemmmmees YIK,  ctfeet(@= TTPP( L
*

induces an isomorphism
cx/cp =cry
Proof: Let m =np p"P'and let
,im) = la Eh | op E uilip) forplmoc).

Then IK = I}")K* because for every a E /K, by the approximation
theorem, there exists an a € K* such that ctpa — 1 mod pnp for Pim,

and apa > 0 for p real. Thus f3 = (apa) E 1km), so thata = fJarlE |j;' K*.
The element@ a E !}U“n K* arc precisely those generating principal ideals
in PK, Therefore the correspondence a 1+ (a) = npj-x, plwew defines a
surjective homomorphi€m

K = 1km) K*/K* = 1i")//km) N K*---ene )" H{EP{(

Since (a) = I for a E If(. the group('®' = I;'K*J K* is certainly contained
in the kernel. Conver@ely, if the class [al repreentcd by a E 1km) belongs
to the kernel, then there is an (a) E Pf(, with a E !}mln K*, such that

(@) = (a). The componenl€y of the idele f1 = cw -1 sati@fy /Jp E Up for
p 1 moo, and /3p E ut"l for Plmrxi, in other words, f3 E 1;', and hence
[al= 1,8] E 1;'K*/K" = CI(. Therefore Cfl i€ the kernel of the above

mapping, and the proposition is proved. D
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The ray class groups in the ideal-theoretic version Cl@= JK'/PK were
introduced by HNNR!CH weH. (1842-1913) as a common generalization of
ideal class groups on the one hand, and the groups (Z/mZ)* on the other.
These latter groups may be viewed ai, the ray class groups of the field Q:

(1.10) Proposition. For any module m = (m) of the field Q, one has
C,;;:/IC") @ CIQ @ (7/mZ)*.
Proof: Every ideal (a) € .!(; has two generators. a and -a. Mapping

the positive generator onlO the residue class mod m, we get a surjective
homomorphism .I(T" -+ (Z/mZ)* whose kernel consists of all ideals (a)

which have a positive generator = | mod m. But these are precisely the
ideals (a) 1,uch thata= 1 mod p'y for pl moo, i.e., the kernel of PJI'- O
The group is canonically bomorphic to the Galois group

G(Q(um)IQ) of m-th cyclotomic field Q(Jt,,,). We therefore ohtaina canonical
isomorphism
GQUuID = Cg/CE.
It b clasi, field theory, which provide<; a far-reaching generalintion of this
important fact. For all modules m of an arbitrary number field K, there will
he Galoi<; exten€ions KmIK generalizing the cyclotomic fields: the so-called
ray dass fields, which satisfy canonically
G(KmIK) € CK ;er;
(see *6). The ray class group mod | is of particular interest here. It is related

to the ideal class group Cf k - which according to our definition here, is m
general not aray class group - a<; follows.

(1.11) Proposition. There is an exact sequence

pred

where o€ i8 the group of totally positive units of K.

Proof: One has Ct_k. ;; CK/Ck = h/I}K* and, by (1.3), CIK &
IK/'f"K*, where 1} = npuP and ;" = TTPt=UP x np,C>JK;.
We therefore obtain an exact sequence
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f-lor Ihc group on the left we have the exact I',Cquence

1- ""nK*/tk nK" - 1;" k- %" K*kK> - 1L
But ti""- nk* = o* |knk* = 0@ and 1IX/Ik = nPI'X.K:/up =
TT,,eo,llIl:. ]

Exercise 1. (1) Ai;, = (2 @7,Qi) X IR

(1i) The quotient group A::,/Z is compact and mnnccted.

(i11) A:./Z i arbltranly and uniquely divielhle, i.e., the eduatlon .u =y hasa
uni4ue @olullon, forevery n EN and y E A(/Z.

Exercise 2. Lei K be a number field, m = 2'm' (m' odd), and let S be a fimtc
of prime€. Let a EK* and a EK;™, forall p ¢ S. Show:

(i) If K((2,JIK h cyclic. where(,_, i€ a primitive 2'-th root of unity. then a EK*"'.
(i1) Olherwi€c one has at least that a E K*“‘/27

Hint: U@e the following fact, proved m (:Ul): if LIK i€ a linitc cxtcn€ion in which
almo@t all prime ideal€ split complelely. then L = K.

Exercise 3. Write /J = Ji x 1},_,, with 1/ = npt,_U,. 1},_= nplc,. Up. Show that
takmg integer power€y of 1deles a E: ii* extend€ by continuity to exponentiation u'
with x E Z.

Exercise 4. Let 11, ... ,t, E 0@ he independem units. The image®p i:1, ... f, in Ji

are then independent units with respect to the exponentiation with clements of Z,
i.e., any relation

=1 r EZ
imphe@ t, =0, 1 = |,

1<:xercise 5. Let 1:: E 04 be totally po@1live, i.e..< E li. Extend the cxponcntiation
n - e", by continuity to an exponentiation IR-—-+ =0 X B
m such a way that 91(1:1) = 1

Exercise 6. Let P, -....ph,e the complex prime€ of K. Fory ER, letef;,(y) he
the idele havint component e*m at p;, and components | at all other places. Let
....F1 be a Z-ha@1€ ot the group of totally po@llivc units of K.

(i) The 1dele\ of 1he fonn
u=fi" ¢1(3'1)- ¢,QV). :.EZ°xIR., vy, EIR,
form a group, and have ab€olutc nonn 91(a) = 1.
@y ct n a principdl ideal if and only it A; E:Z s r_, x IR. .mdy, EZ <;;R
Exercise 7. Sending
[T T T R L AL RRRr AL
define€y a continuou\ homomorphi€






into the group C@ = (la) ECK | 91(1111) = 1), with kernel Z! x Z.
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Exercise 8. (1) The image L) of fis compact. connected and arbitrarily divi\ihle
qi f yield€ a topological isomorphl@m

1:(Z xR)/Z) xCiRiZ) __:: . D&

Exercise 9. The group ). is the mtcr€1.x:tion of all suhgroups or finite mdex
inCl, and it is the connected component of | in

Exercise 10. The connected component Dx or | i the ldclc r.:ian ck i\ the
dm:ct product or t cople€ of the "olenoid" (z x s circle@ and a real
hnc.

Exercise 11, Every idectl clas of the cla..,.., group Cl€¥ can be repre@entcd by an

integral idcal which i€ prime to an fixed ideal.
Exercise 12. Let ,, = uk. Every cla@€ in can be represented by a totally
po@itive numher in 0 which is prnne 10 an fixed ideal.

Exercise 13. For every module m, one has an cxacl €equence
I > o/d.!. ;. (o/mf----;. Cl 5. Cl@ .-, |,

@here re\p, 1s the group of totally po,.ltive umh of o, rcp. of totally
po@ltive =1

Exercise 14. Compute the kemeh of Cit--+ CI;. and C/€* = C'!t tor rn'Im

§2. Ideles in Field Extensions

We @hall now study the behaviour of idClc'i and idClc cla..,ses when we
pa>€ from a field K to an extension L. So let LI K be a finite extcn..,ion of
algebraic number fields. We embed the idele group Ik of K into the idele
group ft. of L by sending an idele a= (ap) E /K totheidele a= (a:pl E ft
whose components a:l-| are given by

a@= ap EK;<;L\1 for @lp.
In this way we obtain an injective homomorphi€@m
--—h.

which will alway€ be tacitly used to consider h  a€y a subgroup of IL. An
element a = (aq:;) € IL therefore belongs to the group | K if and only if its





components aq:; belong to Kp (€IP), and if one ha.., furthennore a,:p = a,:p,
whenever€ and€- lie ahove the @ame place p of K.

Every isomorphi@m a : L » aL induce an isomorphi€@m

a: ft. -
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like this. For each place g3 of L, a induces an isomorphism
a: L1+ (aL)<TI-1-

For if Y%2e have a = g]-lim a,. for some sequence a, E L. then the €cquence
aa, E aL converges with re@pect to | KTIJ in ((JL)<T"1J, and the isomorphism
is given by

a= g]-lima, 1+ aa = ag]-lim (Jct..

Foranidelea E IL, we then define au E IL to be the idele with components
(a@)<T:P =am:p E (aL)<T})-

If LiK is a Galois exten<,ion with Galoi€ group G = G(LIK). then
every a E G yields an automorphism a: ft.---+ IL. i.e.. IL is turned into an
G-module. As to the fixed module 12 = \a E h | (Ja = a foralla E G).
we have the

(2.1) Proposition. ff LIK isa Galois cxtcmion wir/J Galois group G, then
1E = IK
Proof: Leta E IK @IL.Fora E G, the induced mapa: L:p-+ Loii@a
Kp-i1>omorphism, if gJIp. Therefore
(aa)<T'l.J = aaii = ai1 = a(T,;p,
so that aa =a, and therefore a € 12. If conversely a= (a,l.J) E If, then
(0a)yq = oog = dgyl

for all (3 E G. In particular, if a belongs to the decomposition group
Gil = G(LplKp), then a$= g3 andaa; 1= a:psothata:p EK;.Ifa EG
i€ arbitrary, then a: L,:p--—+ L(T,:p induce€p the identity on Kp, and we get
al-1= (Jall = a(T".J.1 for any 1%:0 places q3 and aq] above p. Thi€ show€ that
aEIK, <

The idClc group ft is the unit group of the ring of adClcs A,. of L. It i.@
convenient to write this ring as

where
Ly=T]]tLg-
Bip
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The re@lricled product I]pLP consists of all families (ap) of elementsap E Lp
Quchthatay E Op= TT,:140,,u for almost all )J. Via the diagonal embedding

the factor Lp is a commutative Kp-algebra of degree L'+lIP[L,;p: Kp] =
[L : K]. Thc€pe embeddings yield the embedding

Ag — Ay

whose restriction
K =AK  c....ofif, =IL

turns oul 10 be the inclusion considered above.

Every ap EL ¢ defines an automorphism
ap: Lp----- + Lp, X ,--.ap\

of the Kp-vcctor space Lp. and as in the case of a field extem,ion, we define
the norm of ap by
NLriK, (ap) = det(Up).

In this way we obtain a homomorphism
N1,1KP L@+ K;.
It induces a norm homomorphbm

NLK : 11—+ h.

between the idelc groups li.= 1]PL; andh = [JPK;. Explicitly the nom1
of an idele i given by the following proposition.

(2.2) Proposition. 1f LIK i€a finite extem,ion anda = (a,p) E IL, the local
componenfa of the ide/e N1.w (a) arc given by

NL1da)p = I Nti-IK€(a:p).
+1P

Proof: Puttingap=(a<p):plp E Lp, the Ku-automorphi€m ap: Lp----+ Ly i€
the direct product of the K p-automorphi@msm,u: L,:p -—+ L:p. Therefore

NL,IKp(ap) = det(ap) = N det(a:p) = TT NLi,1Ki (a:p). u}
VIP “Hip

The itIClc nonn enjoys the following properties.
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(2.3) Proposition. (i) For :1 tower of fields K £ L £ M we have
N,111K = NLIK o N.w1Ls

(i) IfLIK iscmbcddedintotheGaloi. @extensionMIK andifG = G(MIK)
and H = G(MIL), then one ha@ fix a E h: N1.1K(a) = firEG/H aa.

(iii) NL-K(a) = alL.KI fora EIK.

(iv) The norm of the principal ide/e x E Le is the principal idele of K
defined by the uwwl norm NL1K(,-).

The proofs of (i), (ii), (iii) are literally the same a€ for the nom1l in a field
extension (:-.cc chap. I, *2), (iv) follows from the fact that, once we identify

Lp =L ®K Kp (sec chap. I, (8.3)), the Ky,-automorphism f, . Lp--+ Lp,
Y it arigpes from the K -automorphi€m , : L -+ L by tensoring with Kp.

Hence = det().

Remark: For fundamental as well as practical reason€p. it i:-. convenient to
adopt a formal point of view for the above considerations which allow€ us to
avoid the constant back and forth between idele€y and their components. Thi€
point of view is based on identifying the ring of adClcs AL of L as

AL =Ag ®x L
which results from the canonical isomorphism€ (see chap. I, (8.3))
Kp®K I, € L11= f1 LW, a110 @i+ a1y (T+la).
1y s

Herc r,:p denote€p the canonical embedding r'l-1: L -+ /13,

In this the inclusion by components h  £; h i€ simply given by the
embedding oo AL, a i+ a ® |, induced by K £; L. An i€omorphism
L -+ al. then yields the i€omorphism

a AL =hk Rk L —> Ag ®k oL = Aq]

via a@ ®a) = u ®aa, and the norm of an L-idtle a E A;
the determinant

i-. simply

NLIK (a) =del,1r (a)

of the endomorphi:-m a : AL -+ AL \\>hich a induces on the finite AK-
algebra A1 = AK ®K .

Ilcre are consequences of the preceding investigation:-. for the idele class
groups.
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(2.4) Proposition. If LIk is a finite extension, lhcn rhc  homomorphism
1K -+ IL induces an injection of idelc cim,s groups

CK---+ CL, aK*i-—+ al*.

Proof: The injeclion /k -+ IL clearly maps K* into L* For the injcctivity,
we have to show that IK n L* = K* Let MIK be a finite Galois extension
with Galois group G containing L. Then we have /K <;; li. <;; M. and

IKnLrizh nM*<;(h nM¥ =IKnMG=h nk*=kx~ 0O

Via the embedding CK -+ CL, the idCle cla’>s group CK become€ a
subgroup of ci.: an elemental* £ CL (a E Ir,) lies in CK if and only irthc
class aL * has a representative @' in IK. It is important to know that we have
Galois descent for the idele class group:

(2.5) Proposition. If LIK is i Galois ex/cm.ion and G = G(L IK), then CL
is canonically a G-module and Cf =CK.

Proof: The G-module /L contains L- as a G-submodule. Hence every
a E G induce) an aulomorphi’>m

Cl€CL, aLi--+(arx)L*.
This give€p u€ an exact se4uence of G-modules

1 -+ L%+ IL-—-+ CL-—-+
We claim that the sequence

| =+ LxG -+ If -+ Cf -+ 1

deduced from the first is till exact. The injectivity of L*c; -+ « i€ trivial.
The kernel of " st ist NL* = IKN/* = K& = L*c;_ The
surjectivity of t2 > not altogether straightforward. To prove it, let

alx E Cf. For every a E G, one then has a(af.*) = al ), i.e., aa = axlr
for some Xir EL". Thi€ x,.,. isa "crossed homomorphism", i.e., we have

Kot = Ag GAr.

— ot

Indeed, xrr = T ¢ any €=er(€)€ = ouXr By Hilbert 90in
Nocther’s version (see chap. 1V, (3.8)) ,;uch a cro%ed homomorphi€m is
the form X1r = ay/y for some y of
and era'= cooy-! = ax,oy- Ete.Puttinga'= ay !yieldsa'l * = alx

surjeclivity. =ay '= a, hencea' e 1£". This prove€
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The norm map Ni IK : h_. IK sends principal idele€ lo principal ideb
by (2.3). Hence we get a norm map also for the idclc cla>€ group CL,

NLIK : CL----- + CK.

It enjoys the same properties (2.3), (i), (ii). (i
ide'e group.

), a@ the norm map on the

Exercise 1, Let w; be a ba@ls of Then the 1€omorphi\m
LtFhKp;;, nJUIPLp for almo@t all prime p of K, an omorphim

wo1pm -EBw,np © [0,
P

where op, resp. O\I, i€ the valuation ring of KP- re@p. L73.

Exercise 2. Let LI K he a finite extenlion. The ab@olutc norm “Ti of idele\ of K,
resp.l,, hehave\ a\ follows under the inelu@ion iyK 'K -, IL. re\p. under the
nom1 NL.1K: li,-.1;,=:

U11(111K(a) = “Ti@)LKI  for a EIK,
" TI(N11do-)) = 'Ti(a) for a e fi.

Exercise 3. The corre@pondem:c between idClc€ and ideal€. a
follov.ing rule. in the Calc of a Galoi cxtcn@mn LIK,

(N1.:K(@)) = N1 K-((@)).

(a). \atilfie® the

(For the norm on ideals.. \ee chap. lll, §1)

Exercise 4. unlike the idClc class group, doe\ not have
(ialo1€ a Galoi@ extensmn . IK, the homomorphism
CIK---, i\ in general neither inJcctive nor sugectlve

Exercise 5. Define the trace  Tryx : A; -» A] hyTrik(LY) = trace or the
endomorphi@m A f- a1 of the A -aloebra A, . and @how:
(i) TriiK@p = L\JIP Trl,.1Kp(a,:p).

(ii) Foratov.er of field K <i: L ,;; M, one ha% TrWik = "frl. ' "1)}-M 1

(i) If LIK is emhedded into the GalO1s cxtcn€ion and if G = G(MIK) and
H = G{MIL). then one ha for a E A1, Tr1 da) =

(iv)"frilda)=IL:KILY  foraEAK.

(v) The trace of a principal adCle _\ E L I\ the principal addc in AK dctincd hy the
usual trace Tryix (x).

§3. The Herbrand Quotient of the Idele Class Group





Our goal now is to show that the idClc cla€s group !-.atisties the etas€
field axiom of chap. IV, (6.1). To do thi€ we v.ill IIN compute its Herbrand
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quotient 11 is constituted on the one hand by the Herbrand quotient of the
idClc group, and by that of the unit group on the other. We study the idele group
first.

Let LI K be a finite Galois extension with Galois group C. The G-module
h may be described in the following simple manner, which immediately
reduces usto local field:,. For every place p of K we put
L= nL$ and UL_p= nul3.
“JHp Pip
Since the automorphisms a E G permute the place€p of L above p, the groups
L€ and VL.p are G-modules, and we have for the G-modulc h the

decomposition
h elJL;,
P

where the restricted product is taken with re:,pcct to the €ubgroups UL p € L;.
Choose a place P of L above p. and let G-i» = G(L,vIKp) € G be
its decomposition group. As a varic<; over a system of representatives of

GjG,;,3. aqJ runs through the various places of Labove p, and we get

L; = iiL@'+l = ga(L$), UL.p =gu"'+l = ga(u,-2).
*
In terms of the notion of indur ed module introduced in chap. IV, 7, we thu:,

get the following

(3.1) Proposition. /,; and Ut..p are the induced G-modu/es

L@ = Ind@;-v(1.$), Ui,p = Ind@/(U,:p).

Now let S be a finite :,ct of places of K containing the infinite places. We
then define I{= 1}, %here S denotes the set of all place:, of L which lie
above the place€ of S. For JI_' we have the G-module decompo:,ition

it= N x NuLp,
pd pis
and (3.1) give,:, the

(3.2) Proposition. if LIK is.1cyclic extemion, and if S contains a// prime:,
rnmified in L, then we /Jave for i = 0, - | th:it

H'(G.1}) € ffiH(G,;13.L"ii)) and H'(G,I1.) € ffi//'(G.:p./.;_).
pec, 3

where for each p, 1} is a chosen prime of L a/Jove p.
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Proof: The decomposition If=  <gBp<cA L;) ffiV. V = npii's U,p, gives m,
an i:-.omorphism

IM(G,I}) = i lli(G,L;) ffi H'(C.V),
PES

and an injeclion H'(G,V) - npti" H'(G, uL.p). By (.U) and chap. IV,

(7.4), we have the isomorphisms H(C,L;) H'(C,-.p.L;_» and

H'(G.lh.p) i [(GYLU+y. For p <t S, LUIIKp is unramified. Hence

H'(C,v,li;;p) = 1, by chap.V, (1.2). This shows the llr@t claim of the

proposition. The second is an immediate consequence:

Hi(C,ft.)= @ H'(C.IfJ - € ffiH(Gq:i,L;p)=FffiH'(GJ.I.Lii),
S pes P

[m)

The proposition says that one has //-*(G,IL)= /1}, because /-1 *(Gti, L1J)
= {1} by Hilbert 90. Further it says that

IKINLIKh = DK/ Nk, LY
T

where ,:P is a chosen place above p. In other words:

An idelea E IK b a norm of an idCle of L if and only if it is u norm
everywhere, i.e.. if every component ap is the nonn of an element

As for the Herbrand quotient h(G, ii) we obtain the rcult:

g‘i]%gsrwoition. If LIK h, acyclic extension and if S contains all mmified
nG.ie) = N,
s

where 1p = /Lti: Kpl-

Proof: We have 1-1-(G, ii)= npes 1-1-1(G,v,Lii) = I and
HoG,if)= N HYG,v,Cl)).
ot

By local cla@s field theory. we find #/-1°(GU.l, L;) = (K; : NLWIKL@)

= np. Hence o s
¢ #HY(G, I}
WG ISy = % =[I»
#HUG ) pes

Next we determine the Herbrand quotient of the G-module Ls= Ln 12
For this we need the following general
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(3.4) Lemma. Let\l he an s -dimen. @ional €-vector .€p.:1ce, and letG bea
finite group of automorphism€ of\/ which operates as a permutation group
on the clement.€ of abasi@ v;. V,Doov, =
I[I' is 1 G -invariant complele lattice in V, al s; I for alla, then
Ihere exists a complete sublatticc in I,
r=z:w, + -+Z:w,,
such tiwtaw, = w,,.(,| fora/la E G.

Proof: Lel | | be the sup-nom1 with respect to the coordinates of Ihe basis
V1, ... , V., Since I' is a lattice, there exists a number h such that for every
x E \l, thereisa y E r satisfying

Ix-yl <h.
Choose a large positive number t ER, anday E r such that

Itvi- yl <h,
and define

w,= Lay,
(=]

i.e., the wmmation is over all a E G wch that a(l) =i. Forevery r E G
\\-'e then have

w = L ray= L PY=ire()
a()=! p()-r(1)
It i), therefore enough to check the linear independence of thew,. To do this,
let

Lc,w,=0, cEIR
1=1

Ifnot all of the ¢, = 0, then we may assume le,l :Sc | and ¢; = I for some j.
Let

y =i -y,
for some vector y of absolule value lyl < h. Then

= ay=t Vg(ty — Yi =0V — ¥i |

where 1Y,I .:S gh, for R = #G, and n, = #[a E Gl a(l) = i}. We
therefore get
O=1L cw,=1ILlcny,- z
= 1=1
with Izl .:S sih, ie.,
z=tn,vJ+Ltc,n,v,.
i-f1

If t was chosen €ufllciently large, then : cannot be written in thi), way. This





contradiction proves the lemma.
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Now let LIK be a cyclic extemion of degree n with Galois group
G = G(LIK), let 5 be a finite set of place€py containing the infinite places,
and let S be Ihe set of places of L that lie above the places of S. We denote
the group L.€ of.€-units 5imply by LS.
(3.5) Proposition, The Herbnmd gtlotienl of the G -module L™ satigfies

h(G.,I,€)=_! Tl up,
N po
whereng1= [L'+: K111,
Proof: Lel {c,p | 1} & SJ be the standard basis of the vector space
V = fl'+Jc IR. By (1.1), the homomorphism
A L8t V, Af@@) = L_Iog lal'+lc,p,

ha€ kernel p(L) and its image isan (.I'- 1)-dimensional lattice. .S =#l.We

make G operate on V via
ac,p =

NN
Then A i€ a G-homomorphism because we have, for a E G.
AGau) = L log laaj-+ic;p = L loglala 1+_1ac,. 1,p
P P
=a(Llog lal,,. 1,.pC,--1'+l) = aA(a).
m

Therefore ¢y = Z%gey and A(Ls) generate a G-invariant complete
lacticer in\'. Since Zeq is G-isomorphic lo Z, the exact sequence

00—+ 7-Cy---tr- _+0,
together with the fact that 1I'/Zco = A(LS)‘ yield5 the identities

h(G, Ls)= h(G.),(L") = h(G. Z:)-/2(G, I' :f 1,(G, 1.
We now choose in I' a sublattice I', in accordance with lemma (3.4). Then

we have
I'= EYBIZW'H =EBEBzw+ =EBr¢

peSHIP P=s
and aw'+-1 = w,--:JJ This idenlilie@ I'; as the induced G-module

r= = EB a@:w+i) = Ind@@w+io)

oEG/(p
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where 'Po ii- a chosen place above p, and Gp is its decompoi-ition group. The
lattice 1" has the same rank as I', 50 is therefore of finite index in I' From
chap. IV, (7.4), we conclude that

G, L% = onG.r) =@ TT hGr;) =€ TT hGuzw+_i,)
n n pd n pFs
& TTiea
n p=i
X . *
Thus we do find that /i(G, L") = npE.S- np, Where 11p =#Gp= [L:p: Kp].
N

From the Herbrand quotient of 1J:.' and L € we immediately get the Herbrand
quotient of the ide!e dai-1> group CL. To do it choose a finite set of places S
containing all infinite onei- and all prime€ ramilied in /,, such that Ir.= 1ZL*.
Such a set exisb by (1.4). From the exact @e4uence

J—, SN AR S— +

arises the identity
h(G,Cr.) = h(G.1:)11(G. L-)-*
and from (3.3) and (3.5) we obtain the

(3.6) Theorem. 1f LIK isa cyclic exlcnsion of degree n with Galois group
G = G(LIK). lhen
#HYG,C)

MO =G en T

In particular (ck : Nr KCr.)::: 11

From Ihi€ remit we deduce the following interesting con€equence.

(3.7) Corollary. 1f LIK is cyclic of prime power degree n = p" (v > 0),
then there are infinile/y nwny places of K which do not split in L.

Proof: Assume that the set S of nonsplit primes were finite. Let M IK be the
subextension of LI K of degree p. For every p <j. S, the decomposition group
Gp of LIK is different from G(LIK). Hence Gp t;: G(LIM). Therefore every
p <j. S @plits completely in M. We deduce from this that NMIKCM = CK,
thm, contradicting (3.6).
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Indeed, let a E /K. By the approximation theorem of chap. I, (3.4).
there exi@ts an a E K* such that is contained in the open subgroup
NM«MKvMi;,fOT alpeS Ifpf then aj;a- 1 is automatically contained
in Nagx,MJ because M<:p = Kp- Since

I [Nk I = @K:/NMW\K‘,MQ

the idele 1n1-2 is a nonn of some idele fl of IM, ie., a= (NMwfla &
NMIK/IviK*. This shows that the class of a belongs to NM,KCivt, so that
CK=  NMIKCAF. ]

(3.8) Corollary. Let LIK be a finite extension of algebraic nwnber fields.
1f almost all primes of K split completely inL, then L =K.

Proof: We may a&sumc without loss of generality that LI K b. Galois. In fact,
let MIK be the nonnal clo:;.ure of LIK, and write G = G(MIK) and H =
G(MIL). Also ]cl p be a place of K, g3 a place of M above p, and
let Ci-:pt be it€ decomposition group. Then the number of places of L above p
equals the number #H\G /G'J3 of double cosets Ha Ge;p in G (€ee chap. I, *9).
Hence p ©plit€ completely in L if #6\G/GY3 = [L : KJ = #H\G. But this
is tantamount to =1, and hence to the fact that p splits completely in M.
So wumc LIK  Galoi<, L #- K, and let a E G(LIK) be an clement
of prime order, with fixed Held K'. If almo&t all prime€ p of K were
completely split in L, then the <,amc would hold for the primes p' of K'. Tiiis
comrndict& (3.7). a

Exerciz;e 1. If the Galoi€ cxtcmion LI K is not cyclic. then there arc at most finitely
many prime€ of K which do not \plit m /..

1<:xercise 2, If /K i\ afinite Galoi\ then the Cialois group G(LIK) 1
generated by the Frobcniu€y automorphi@me if'l-1 prime idcab ,P of L which arc
unramitied over K.

Exercise 3. Let be a finite abelian extenion, and let D be d subgroup of I;.
@uch that Kx is in/Kand D s::; Ny 1KL". Then L = K.

Exercise 4. Let ....L,IK he cyclic extension€ of prime degree p such that
L,nL, =K forl Then there arc infinitely prime p or K whJCh \plit

completely in L, _.. 1, hut which are non@plit m
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§4. The Class Field Axiom

Having determined the Herbrand quotient h(G,CL) to be the degree
11 = [L: KI of the cyclic extension LIK, it will now be enough to show
either H-1(G,CL) = | or H%G.CL) = (CK : NLIKCL) = 11. The first
identity is curiously inaccessible by Yay of direct attack. We are thus stuck
with the <,econd. We will reduce the problem to the case of a Kumrnel cxtemion.
For such an extension the norm group NL1KCL can be written do'.%n
explicitly, and this allows us to compute Ihe index (CK :NL1KCL).

So let K be a number field that contain;, the 11-th roots of unity, where n
is a fixed prime pmrer, and let LI K be a Galois extension with a Galois
group of the forrn

G(I,IKJ ™ (Z/nZ),

We choose a finite set of places S containing the ramified place'>, tho;,e that
divide n, and the infinite ones, and which is wch that /k = 1 J:: K . We Yrite
again Ks= li: n K* for the group of S-units. and we puts= #S.

(4.1) Proposition. One has 1 ?. r, and there exist. ¢ a set T of s- r primes
of K that do not he/ong to S such that

L=km]

where L1is the J...cmc/ 0{1hc map Ks----+ npcT K@/K;".

Proof: We show first that L = K(n) if L1 = f*"'nKs,and then that L1 is
the ;,aid kernel, By chap, IV, (3.6), we certainly have that L = K (:JD), with
D = L*"nK. Ifx E 4. then Kp(,v't)IKp isunramifiedforall p (j. S because
S contains the ramified in L. By chap. V, (3.3), we may therefore
write x = with 11¢ EUPL Yp EK;. Putting Jp = | for p ES. we get
an idele y = (yp) which can be written as a product _r = a: _with a EI{,
z EK*. Then x::-/16 1poe E Up forall p(_S, i.e., t+ “E ,Z\ y = K5,
;,0 that xz-** E LI Thi;, @hows, that fJ = L1K*", and thu@ L = K(n ).
The field N = K(w) contaim the field t because L1 = L*, n K@<;
K-". By Kummer theory. chap, IV, (3.6), we have

G(NIK) € Hom(Ks/(Ks)'1,Z2/11Z)

Hy (I.1), Ks is the product of a free group of rank 1 - 1 and of the
cyclic group 11(K) whose order is dlvi;,ibk by n. Therefore Ks/(Ks)"





§4.The Cla\\ held Axmm 381

i@ a free (:Z/n..2)-module of rank s, and so is G(NIK). Moreover,
G(NIK)/G(NIL) ;5 i (2/11Z)™ is a free (:-£/112)-module of
rank r sothatr S s, and G(N jl) ii> a free (Z/ nZ)-module of ranks -r. Let
ai, ,a.,, be ofG(NIL),andIctN, bethefixedficldofa,,
i=1...,s-r. L=n;'=;-N,. For everyi= 1, ,s-r wechoose
aprime 13, 0f N, which is nonSplitin N such that the primesp .- -.p, _,
of K lying below 13;,,13.,-, arc all distinct. and do not belong to S. This
is poi>sible hy (3.7). We now show thal the set T = {p;. .,p,_,} realize-;
the group L1 = L*n N K5 as the kernel of Ks .. TTp<CT K;IK;"
N, is the decomposition field of NIK at the unique prime 13; above

$;, fori =1 .s - r. Indeed, this decomposition held Z, is contained
in N, heeausc $, is nonsplit in N. On the other hand, the prime p,
is unramified in N, because by chap. V. (3.3), it is unramihed in every
extension K ), UE K5. The decomposition group G(N 1Z,) 2 G(N jN,
is therefore cyclic, and necessarily of order n since each element of G (NIK)
has order dividing n. Thii> shows that N, = Z,.

From L =] N, it follows that LIK is the maximal i>ubextension of
NIK in which the primci'l p;, ,Pv-r split completely. 1-ior | EK-€ we
therefore have

(E.d{==>K(V\)@L{==>K11,(®)=K11,i=l, .€-r,
{==>1EK;;,i=1 .,s-r
Thi:-, shows that L1 is 1hc kernel of the map K> T KK, o

(4.2) Theorem. Let T be ;1 set of places a8 in (4.1), and let
CK(S,T) € h(S)HK/K'
h(S,T)=TTK" x TTK x Up.
[ &

Then one h:1.@
NLixCr 2 Cx(S.T) and (Cx : Cx(S$.T)) =IL: K].

In particular. if LK i8 cyclic, 1/Jcn N1L.wCL = CK (S, T).

Remark: It will follow from (.5..5) that NLIKC1. = CK(S,"f) also holds in
general.

For the proof of the theorem we need the following
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4.3) Lemma. /¢ (S.T)NK* = (KVT)",

Proof: The inclusion (K+'>Uf)n S; IK(S,T) n K* is lIrivial. Let
IK(S,T) n K*,and M = K(v1Y), It suffices to show that
for then (3.6) implies M = K, hence y EK*" n IK(S,T) C;: Let
[a] ECK= 1@K*/K* and let a E I';j be a representative of the clas" fa].
The map
[Sgu— Up/u¢*
peT

is surjective. For if .cl denotes ilr,, kernel, then obviously K* n .cl = (Ks )1,

and LIK*1Y/K** = d/(Ks)'1. From (I.1) and Kummer theory, we therefore

get

#S K5y A e

FA/KSY  HGLIK)

Thir,, is also the order of the product because by chap. Il, (5.8), we have

#Up/U@* = n since p f n. We thus find an element x E K'> such that
= xu;, up E Up, for p ET. The idele a'= ax- ! belong€ to the same
a5 a, and we show that a E nmik ht- By (3.2), this amounts to

checking that every component a€ is a norm from M13IKu. For p E S thi€

#HKS/A) =

holds because y E K;n. Hence we have M,:p = for p ET since a@= u;
isa n-th power. Forp ft. S U T it holds because s a unit and M,:plKp is
unramified (see chap. V, (3.3)). This i€ why [aJ E g.e.d. M

Proof of theorem (4.2): The identity (CK : CK(S.T)) =IL: Klfollow¢
from the exact sequence

1ot tFUTNK* K (S, FNK* omememenee + tk'H/IK(S,T)
et Mt KHIK(S, T)K* o+ 1.
Since 1k_U'l k* = 1K, the order of the group on the right i
(G, TK' ¢ IK(S,TK') € (IKK'/K' ¢ IK(S, TK'/K")
© (CK. CK(S,T))

The order of the group on the ieft is

(IfIT nkx k@) NK* = (KLUT @ (wfy = 120
because #(SU T) = 2s - r, and Jin S; KSuT. In view of chap. I, (5.R), the
order of the group in the middle is

3uT: ks n) = Nk = N =112, Ninlpl = nes.
PES pd" Inlp p
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Altogether this gives

n

K
« CK(S.T) =0 .,

=lz'*=[L:K].

We now show the inclusion CK(S,T) S;;; NL1KCL, Let a E IK(S,T).
In order to show that a e NLIKh all we have to check. by (3.2), is again
that every component au is a norm from L<pIKp. Forpe S this is true
because ap e K;n is an n-th power, hence a norm from Ku((€) (@ee
chap. V, (1.5)), so in particular also from Lg,IKp. Forp € T it hold€ becau@c
(4.1) give@ 6. s;;; K", and thus L'IJ = Kp. Finally, it hold€ for p ¢.SUT
since ap is a unit and L:p[Kp is unramified (@ee chap. V, (3.3)). We therefore
have IK (S, T) <;; NLIK11,i.e., CK(S,T) S;; NLIKCL.
Now if /,IK i€ cyclic, i.e., if r = I, then from (3.6).

IL' KI:' (CK 'NL KCLI:' (CK 'CK(S,T)) ©IL' KI'
hence NLIKCL =CK(S,T). [m]

Now that we have an explicit picture in the case of a Kummer field, the
rc@ult we want follows also in complete generality:

(4.4) Theorem (Global Class Field Axiom). IfLIK is 1 cyclic exrcmion
of algebraic number fields, then
#H'(G(LIKJ,CL) € JIL‘ K3 T0,, €0.
|

fori =-1.

Proof: Since h(G(LIK),Ci,) = [L: KI, it is clearly enough to show that
#H°(G(L IK),Ci,) I [L : KI. We will prove this by induction on the degree
n = [L: K]. We write for @hort H(LIK) instead of H°(G(LIK),CL). Let
MIK be a @ubextcnsion of prime degree p. We consider the exact sequence

Ny . .
Car/NLmCr LS Cx/NpgCr. — Cx /NyikCy — |

i.e, the exact @cquence

HO(LIM)-——J. \LIK)———;. HO(MIK) —---nm- I

If p<n, then #H°([,IM) I [L : M], #H°(MIK) I [M: KI by the induction
hypothe@i€, hence #HO(L IK) I[L :MI[M : KI= [L : K].

Now let p = n. We put K' = K(up) and L' = L(pp)- Since
d=[K : K] I p- I, we have G(LIK) ;: G(L'IK"). L'IK" i a cyclic
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Kummer extem,ion, "o by (4.2), #H(L'IK") = [L' : K'] = p. It therefore
:-.ufllce:c. to show that the homomorphism

HOLIK) — HOw K]

induced by the inclusion cL -+ cc is injective. HO(LIK) has expo-
nent p, because for .1 E CK we always have x/! = N1.w(x). Taking
d = [K" KJ-th powers on H°(LIK) is therefore an isomorphi€m. Now
let X = x mod NL1KCL belong to the kernel of(*). We write x = y‘l‘
for some mod NL KcL, Then Y al-O is in the kernel of (*),
ie,y= ' E Cc, and we find:

yd= NK-K(Y) = NL'1K(11) = NL1dNc1dz')) E NLIKCL

Hence X =

An immediate consequence of the theorem we have just proved is the
famou€y Hasse Norm Theorem:

(4.5) Corollary. Let LIK be a cyclic extension. An c/cmem x E K* i\ a
norm if and only if it i€ 11 nonn locally everywhere. i.e., ;:1 norm in evely
completion L,plKp (fJlp).

Proof: Let G = G(I.IK) and G,p = G(L:plKp). The exact sequence

1_ .1 ft . CL-—+1
of G -modules gives, by chap. IV. (7.1), an exact sequence
Fri.cl)—+ HOGL® . HYG.t).
By (4.4), we have H G.CL) = |, and from (3.2) it follows that

HO°(G, ft.)= EBP 119(G<p, Lq]). Therefore the homomorphism
. @K:/N,,N‘K‘_Lg_l
v

K*/NL1KL*-

is injective. But this i€ the claim of the corollary. [m]

It should be noted that cyclicity i€y crucial for Has:c.e\, noml theorem. In
fact, whereas it i€ true by (3.2) that an clement .\ E K * which is everywhere
locally a norm, is always the norm of -Orne idele a of L, this need not he
by any means a principal idele. not even in the case of arbitrary abelian
extension€p.
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Exercise 1. l)ctermme the norm group . for an arbitrary Kummer cxtcn€lon
m a way analogou, to the ca€pe treated in where G(L|K) = (Z/p"ZI'.
Exercise 2. Let  be a primitive m-th root of unity. Show that the norm grou]
N,z;li1 J]Cr, the ray da€y, group mod m ={m) in Cg;. 1

Exerci1>e 3. An eduation 12 =h,a hecK" hasasolution in K if and on!} il
it1, olvable everywhere i.e., 111 each completion K p

Hint 12 - w2 = K<k - -Jay) won if_ K*2

Exercise 4. I a quadratic form m\‘ 44 u,,\* repre,ent, ...ero over a field K with
more than five clements (i.e., ax{ + -+ + «,x7 = 0 has a nontrivial @olutlon in K).
then there is a representation of zero in Whldl all.1.f=0.

Hint: It a2 = }, f= 0, h f= 0, then there arc non-7ero elements a and fi @uch that
aaz +hjiz = },. To prove thl,. multiply the identity

(- 12 @
e 12 #(+ 2=

hy a/;2 = A and msert 1 = by*/a. for some element ¥ # 0 such that 1 # +1| Use
thi€ to prove the claim by induction.

Exercise 5. A 4um.!ratic form ,u:? +c:2.a,h,c EK". rcpre€ent, 7ero if and
only irit represents 7eroeverywhcrc
Remark: In complete lity, one ha, the "local-to-glohal prmelple™:

Theorem of Minkowski-Hasse: A 4uadratic form over J number held K repre.ent@
7ero 11" and only 1f 11 repre,enL, zero over every completion kp

The proof follow€ rrorn the rc@ult stated m exercise .5 hy pure Jigebra (@cc 11131).

§5. The Global Reciprocity Law
Now that we know that the ide!e cla€ps group satisfies the cla% field axiom,
we proceed to determine a pair of homomorphi\m1>
Gy 3. Cg - B)
obeying the rules of abstract clal>s field theory a€py developed in chap. IV,

*4. For the Z-extension of  given by d, we have only one choice. It i1>
described in the following:

(5.1) Proposition. Lei Q I(Q be the field obtained by adjoining all root. € of





unity, <md let T be the torsion subgroup ofG(DIK) (i.e., the group of all
element. € of fiuite order). Then the fixed field I I(Q of T is a Z-extension.





386 Chapter VI. Global Clag€ Field Theory

Proof: Since Q = Un .1::](1111), we lind
Gil?l(l @€ G(I/(1,,JIG) @ © (Znz)y e Z*

Bt Z =TT"zr, and Z;, 0 Zp x Z/(p - NZ for P = 2 and
Z, 0 Z2 x Z/2Z. Consequently,
GQIQ) & Z* oix f, where =TT z/(p- Nzxz/2z.
1ci-2

Thil> shows that the torSion 5ubgroup T of G(Q I1Q) i€ iwmorphic
to the tor@ion subgroup of Since the latter contains the group
ffip_t-ZI(p - 1)@ ffi Z/2Z, we see that the closure T of Tis iso_"?lorphic
to T. Now, if Q is the fixed field of T, this implies that C(QII!'Ql) =
GWIQJ/T ¢, Z. L

Another description of the Z-extension QIQI is obtained in the following
manner. For every prime number p, let 113, 1Q he the field obtained by
adjoining all roots of unity of p-power order, Then

a2y = MM eEuig) = M vy = Z;,.

and Z;, €) 20" x Z/(p - )Z for p-=1-2 and Z; € Z, x Z/2Z. The torsion
subgroup of Z;, is isomorphic to Zj(p - 1)Z, resp. Z/2Z, and taking its

fixed field gives an extemion ij(pJIQ with Galois group
oGtaq ¢ :z,,.
The 2-extension QL:QJ i1, then the composite fj_, = TTI ij<1'1.
We fix an isomorphism G(1Q 1Q) € 5 There j..no canonical choice a5 in

the case of local fields. However, the reciprocity law will not depend on the
choice. Via G(QIQ) € Z, we obtain a continuous surjective homomorphism

of the absolute Galois group Gru: = G(QIQI). With this we continue a€y in
chap. IV, 84, choosing k = Q as our base field. If KIQ is a finite extension.
then we put fr =Ikn Q - QI and get a suijective homomorphism

which defines the Z-extension K = Kij of K. i<IK is called the cyclotomic
Z-extension of K. We denote again by Pk the elemenl of G(K IK) which i€
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mapped to | by the i€omorphism G(i<IK) Z, and by (/ILIK the restriction
@kiL if LIK i a suhextension of K1K. The automorphism ok must nut be
confused with the Frohenius automorphism corresponding to a prime ideal
of L (sec *7).

For the G{;-module A, we choo€e the union of the idele elm,€ group€
CK of all finite extensions KIQI. Thus AK= CK. The henselian valuation
v:C( » 2 will he obtained a€ the compo@ite
ST ]| = d_ =
Ce —> G(QIQ) —— ZI
where the mapping [ , Ql:QII will later tum out to be the norm residue symbol
(,ijl(Ql) of global clas field theory (sec (5.7)). For the moment we merely
define it a€p follows.

For an arbitrary finite ahelian extension LIK, we define the homomor-
phism
[ LIK[E K - G(LIK)

by
[a,LIK[ © IT(anL,[Kp),

where Lp denotes the completion of L with respect to a place €lp, and
(up, LpIKp) i€ the noon residue symbol of local class lield theory. Note that
almost all factors in the product are | because almost all exten€ion5 /,plKp
are unramified and almost all ap are units.

(5.2) Proposition. 1f LIK and L'IK' are two ;lbelfan extensions of finite
algebrnic number fields .@uch that K s; K+ and L s; [.', then we have the
commulillivc diagram

PR G(L'\K')l
I I
K & GU.IK).

Prnof: For an idkle a = (a'+-i) E /k' of K', we find by chap. IV. (6.4), that

(. Lig | K|, = (Mg, (). Lol Kp) . (Rlp).
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and (2.2) implies

[NK'1da). LIKI=  Q(NK'1da)p. LpIKp) = Q.IJP(NK:HKP(mﬁp). LplKp)

© TT(a@ L., IKQ)IL @ [a,LIKIIL D
o

If LIK is an abelian extension of infinite degree. then we define the
homomorphism

I LIKI'IK - G(LIK)
by its restriction5 [ ,LIK]IL' := [ .L'IK] to the finite subextensions L'
of LIK. In other words, ifa Eh. then the elements fa,L'IK] define,
by (5.2). an element of the projective limit € G(L'IK), and la.LI Kl is
hg

precisely this element, once we identify G(LIK) = 0 G(L'IK). Again
one has the equation

[a,LIK] € TT(a,L,IK,J.
'

where Lp does not denote the completion of L %ith respect to a place
above p, but rather the localization, i.e., the union of the completions
L@IKp of all linite subextem,iom, (sec chap. I, §8). Then /.pIKp is Galois,
G(LplKp) € G(LIK), and the product nP(ap,LplKp) converge5 in the
prolinitc group to the element [a,L1KJ. Indeed, if L'IK varies over the lInitc
subextensiom of /.IK, then the 5ets SL'= {p | (ap,L@IKp) -=I- I) are all
finite, o that we may write down the finite products

al,= n(lip.LpIKp)EC(LIK>.
p<c.11-
Tlley converge to [a, LIK J, for if [a, L IKIG(L IN) isone of the fundamental
neighbourhoods (i.e., NIK is one of the finite subextensions of LIK), then
o1 € la, LIKIG(LIN]
forall L' 2 N because

al' IN@ TT(a,.N,IKp) € Ja,NIK] € Ja,LIKI Lv.
'
Thi5 shows that [a, L1K] is the only accumulation point of the family {a,_}.

It is clear that proposition (5.2) remains true for infinite extemions L
and L' of finite algebraic number fields Kand K.
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(5.3) Proposition. For every rootofwlity ( and every principal ideJea E K*
one hw,

[u, K(ntKJ @ |

Proof: By (5.2), we hayavg q(a). Q(¢)|Q] = la.K(()IK]k,(o- Hence
we may assume that K = QLikcwise we may assume that ¢ has prime
power order tm -# 2. Now leta E let vp be the normalized exponential
valuation of for p # x and writt a = up'.@. For p -# £

is unramificd and (p, 1JIp(01QII) is the Frobenim, automorphism
“Pp (-t From chap. V, (2.4), we thus get

‘U",‘”” for p #- £..00.
(a.@u01Q) s =¢"] with w =fo  forp=i
sgn(a) forp=0C.

Hence

Tu,Q(sIIQI( @ N(u.Q..(0IQ, ) (& (*
y

where () = Tin/! = sgn(a) n prilalut = sgn(a) n pli@at = 1.
r 11ifro pfex

[m]

Since lhe extension KIK is contained in the field of all roots of unity
over K, Ihe propo€ition implies

la. KIK1=1

for all a EK*. The homomorphism [ .f<IK]: IK - G(f<IK) therefore
induces a homomorphism

[ .RIKI:cx — GRIO]

and we consider its compo<site

with dk:  G(i<IK)---—+ Z. The pair (dK,vK) i€ then acla>€ field theory, for
we have the

(5.4) Proposition. The mapVK : CK - Zis surjective and is a hensclian





valuation with respect to dK.
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Proof: We first show surjectivity. If L.IK is a tinite subextension of K1K.
then the map
[ LIKI@NS L [K,): K-+ G(L[K)
p

i surjective. Indeed, since ( ,l.pIKp) : K; -+ G(LplKp) i@ @urjective,
[IK,LIK] comains all decompo€ition groups G(LplKp)- Thm all p €plit
completely in the 'hed tield M of [/K,I.IK]. By (3.8), this implie"
that M = K, and so [/K,LIKI = G(LIK), This yield€ furthermore that
/., KIK1=[CK, ii Klisdense in G(K IK). In the exact sequence

| + C + |

[

* . . -
(see 1) the group C¥% is compact by (1.6), and we obtain a splitting,
if we identify R.: with the group_of positive real number€ in any infinite

completion Kp, Thus ck = CI x fite. Now, fR:.KIKJ = 1 for if
X E then [X,K.IKJIL = [x.LIKI = I for every linite @ubextemion
LIK KiK, because we may alway€ write x = with y ER:

and n = fL: K]. Therefore [CK,ilK] = [C¥%,R'IK) is a closed, dense
subgroup of G(KIK) and therefore equal to C(ilK). This prove€y the
surjectivity ofvk =dk c[,KIK].

In the definition of a hensclian val.!ation given in chap. IV, (4.6), condition
(i) i€ sati5tlcd because VK(Ck) = 2., and condition (ii) follows from (5.2)
because for every finite extension LIK we have the identity

VK(NLLIKCLI = VK(N, ,Kfi) = ddNL1Kh,ilK]
=fL1KddtL,LILI= tiwv1.(C1.)=.hwi. cal

In view of the fact that the idelc cla€p€y group CK satisfies the class field
axiom, the pair

(dQ: G.
comtitutcs a clas€y field theory, the "global field theory". The above
homomorphismtk =ths f, R'IK]: Ck -+ for finite extensiom K 1Q, sati€fies
the formula

~ |
1K = o ! ,QIQJo NK1L:, = yv-i.:_, 0 NKL;_

and is therefore preci€ely the induced homomorphism in the @cmc of the
abstract theory in ch:tp. IV, (4.7).

As the main result of global class field theory we now obtain the Artin
reciprocity law:
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(5.5) Theorem. For every Galois cxlension LI K of finite algebraic number
fields we have a canonical isomorphism

rtak: G(LIKfh € Ck/NL1KCL.

The inverse map of rLik yield€p a suljective homomorphism

. LIK),CK - G(LIK)™
with kernel The map ( ,LIK) iscalled the global norm residue
symbol. We it also as a homomorphism /K -------- + G(LIK yu,

For every place p of K, we have on the one hand the embedding
G(LpIKp) c.-. G(L 1K), and on the other the canonical injection

( ):K-—+cCK
which @ends up E K; to the cla@s of the idele
(ap) = (... ,1,1.1,ap, l.LIL......).

The€pe homomorphisms expres<, the compatibility of local and global clas€
field theory. a€y follows.

(5.6) Proposition. i1f LI K is an abelian extension and p i.€ a place of K.
then the diagram
;@ G(LplKp)

Hi

ke G(LIK)

is commutative.

Proof: We lirst show that the propo€ilion holds if LI K isa .;.ubexten€pion of
KiK, orifL = K(i), i = R, and ploc. Indeed, the two maps [ , K1K ],
(, KiK): IK-+ G(iJK) agree because from chap. 1V, (6.5), we have

dKo( ,KIK)=VK=dKo[ ,KIK].
Thuo.. if LIK is a subextemion of K IK and a. = (ap) E /k, then
(a.LIK) € [a.LIKI @ Ti(a,.L,IK,).
0

In particular, for ap E K; we have the identity

((@p),LIK) = (ap.LpIKp)-
which €hows that the diagram is commutative when re@tricted to the finite
1->uhextension€ of KIK.
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On the other hand, let L = K(i), i.,loo, and Lp -=fa Kp, Then K; = IR,
j< the kernel of (,LpIK. and (-1,L 1K is complex conjug n
= G(CIIE.). Thus, all we have to show i@ that ((-1),LIK) -=fa I.
If we ((-1). LIK) = 1, then the class of (- 1) would be the norm of a
class of CL, ie., (-)a = NL1K(a) for some a EK* and an idClc a Eh-
This would mean that a = forq=fapand-a = ie,
(a,LqlKg) = | for q -1- p =1.By (5.3), we have
| =[a,LIKI=nqg(a,LqlKqg)= sothat(-1,LplKp)= l.and
therefore -IE N1.pwp(L;) = a contradiction.
We now reduce the general ca<, to these special cases as follows. Let
L'IK" be an abclian cxtcnSion, so that Ks; K', Ls; L'. We then con<,ider
the diagram

LK

4/ ‘ -

ClLo| Ky) *_iil iINGLs
IFCL 1, I - [N

G(LIK) --©C'1-/1V111-C11,

where Lp = KpL, K@= KpK', t€ = KpL'. In thit-. diagram, the top and
bottom arc commutative by chap. IV, (6.4), and the sidet-- arc commutative
for trivial reasons. If now L'IK' it. one of the t-.pccial extemions for which
the proposition is already established, then the back diagram is commutative, and
hence also the front one, for all elements of G(Lp IKp) in the image of
G(L @IK@)----+ G(LplKp)- This makes it cle<1r that it is enough to find, for every
a E G(LplKp), some 5pccial extension L'IK" suchthata liet-- in the image of
G(L@IK@)- Itiseven sufficient to do this only forall a of prime power order,
hecause they generate the group. Pas'>ing to the fixed field of a we may assume
moreover that G(L IK) i5 generated by a.

When Ploo and Lp -1- Kp, i.e., Kp = Ill, Lp = we put L' = L(i) S; C,
and choot--e for K' the fixed field of the restriction of complex conjugation
to L. Then L' = K'(i) and K@ = R, L& = so the mapping

Ci(l, @IK®)--—-+ G(LplIKp) is surjective.

When pf 00, we lind the cxten€ion L'IK' asfollows. Let a be of p-powcr
order. We denote by Ki K. resp. LIL, the Zp-extension contained in K IK.
resp. LIL. and consider the field diagram
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L, ——

L/

1/L

FC———

with localintiom .RP= Kpf, LP= Lpf@(all field€ arc considered to lie in
a common bigger field). We mily now lift o E G(LplKp) = G(LIK) to an
automorphism ClI of LP such that

(1) Cl E G(LplKp),

(2)6-IR =rpR «k forsomen EN.

1

Indeed, '>imee RP=  Ki)( -I- Kp, the group G(RpIKy) -I- I, and thus i€
of finite index if viewed as subgroup of G(fIK) ‘LI 1t is,!_herefore
generated by a natural power ifr = <pf Ik of Frohenius <"PiiK £ G(K IK). A@

in the proof of chap. IV. (4.4). we may lift o toa CT E G([p IKp) such
that CTIRP = vrm. m EN. so that CTIK =

We now take Ihe tixed field K' of CTI[ and the extension L' = K'L. As
in chap. IV. (4.5), conditiom (ii) and (iii), it then follows that [K' : KI < oc
and R' = L. L'IK" is therefore a @ubexten@ion of 1K', and o is the image
of 6-Icp under G(L @K @)----+ G(LUIKp)- This finishes the proof. m}

(5.7) Corollary. ffLIK isan abeli.m extension and a= (ap) E IK, then
(a,LIK) € TT(apJ,IK,).
P

In particular. for a principal ide/e a E K€ we have the produc/ formula
TT(a,LplK,J@I.
P

Proof: Since Ik is topologically generated by the idelcs or the form
a = (op), op E K;, it is enough to prove the fir@! formula for the@e
idele€. Butthi€ i€ exactly the statement of (5.h):

(a.LIK) = (\ap),LIK) = (op.LplKp) = n <aq,LglKg).

The product formula i€ a consequence of the fact that (a.LI K) depends only
on the idele cla€s a mod K*. [m]
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Identifying K; with its image in CK under the map ap i—:- (ap), we obtain
the following further corollary, €here we u<;c the abbreviations N = NLIK
and Np= NIplKu+

(5.8) Corollary. For every finite ahelian exte11. @ion 0ne has

NCL n K; = Nul,;.

Proof: For xp E we see from (5.6) that ((xp).LIK) = (xp,LpIKp)
= I. Thus the class b contained in NCL, Therefore NpL; c;: NCL.
Conversely, let ii E N K;. Then & is represented on the one
hand hy a norm idele a = Nfl, e h, and on Ihc other hand
by an idele (xp), Xp E Ki@. TIlb (xp)a = Nfl with a E K*.
Pa:-:-ing to components shows that a is a norm from L,;1Kq for every

-1- p, and the product formula (5.7) shows that a i:-, also 1 nonn
from LplKp. Therefore -» E NpL;. and thi:-, proves the inclu-jion
NCL N K* £;; Npl@. o
Exercise |. If D@ i, the connected component of the unit element and 1

K"'1K i, the maxim.ii abelian exten,ion of K. then CR/DR €
Exercise 2. For every pla<.ie p of K one ha\ K(@h = Kl Kp
Hint: Use (.5.6) and (.5.8).
Exercise 3. Let p he a prune number, and let M;,IK be the maximal abelian p-
exten\1011 unram1tied oubidc of (pip). I-urther, let /IK be the maximal unrarnified
,ubexten,ion of M1,IK 111 which the mtinite place€ €plit completely. Then there 1s an
exacl sequence
L— G(M,|H) — GIM,|K) — Clg(p)— 1.
where Clg(p) is the p-Sylow subgroup of the idcal class group Clx, and there is §
canenical isomorphism
GM. /1 € N ue/(TTueyn 1),
Pll1 Pl
where [ is the clo€ure of the (diagonally embedded) um\ group F = in TTPyy, I
Exercise 4. The group F(p) = En[l,,Uf"|!S a Ziliodule of rank
E(p)) = |K : Q| — ranky, G(M,|K ] r1.¢"J i€ called the p-adic

11,(F) := ranl
unit rank.

Problem: For the p-adJC umt rank. one ha, the famou€p Leopoldt conjecture:
rLa)=r +s-1

where 1. re@p.. 1. i, the number of all real. re@p. complex. place€: 111 other words.

G(M,|K) =1 *1
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§6. Global Class Fields

A, inlocal class field theory, the reciprocity law provide™ al€po in global cla€5
llcl<I Iheory a complete classification of all abelian extensions of a finite algebraic
number field K. For this it is nccc@ary lo view the idele cla@s group CK
as a topological group, equipped with it5 natural topology which the valuations
of the various completions KP impre% upon it (:,ee §1).

(6.1) Theorem. The map

LI--—-+ Jv/.= N1.1KCt.

isa | -1-corre.\pondence between the finite abelii: W extemion.€ LIK and the
closed subgroup,\ of finite index in CK. Moreover one lws:

L1s;L2 ¢ }.VL1 2 \(Le' A@.1.2=.v1 nVLc, )/LinL2 = wi-ti2-

The field LIK corre.@ponding to the .€ubgroup JV of CK is called the class
field of.V. Il satisfies
G(LIK) = Cx/N]

Proof: By chap. IV. (6.7), all we have to show is that the subgroup:,, ov ofC «
which are open in the nonn topology are precisely the closed :,,ubgroup:,, of
linite index for the natural topology.

If the :,,ubgroup ov is open in the norm topology, then it contain:, <1
norm group Ni_1KCi. and i€ therefore of tinite index. because from (5.5),
(CK : NL1KCL) = #G(LIK)ah_ To show that ;Vi:, closed it is enough to
show that NLIKCL i:,,. For this. we choo"e an infinite place p of K and
denote hy I'K the image of the subgroup of poitive real numbers in Kp
under the mapping ( ) : K; = CK. Then I'K isa group of repre-entative:,,
for the homomorphism 91 : CK -+ & with kernel ci (see @1), ie,
CK = ci x K. By lhe same token. I'K i:, a group of repre:,entatives for the
homomorphi@m 91: CL -+ JR:. We therefore get

N1,KCL = NLIKCr x NL,K I'K = NL1KCj. x I'f: = NLIKC2 x I'K.

The norm map is continuom, and CZ i€ compact by (1.6). Hence NLIKC2 i,
clo@ed. Since rk isclearly also clo:,.ed inck, we get that N1.1KCL i€y closed.
Conversely let _t,/ be a closed subgroup of CK of finite index. We have
to <how that av i, open in the norm topology, i.e., contains a nonn group
For we may assume that the index 11 b a prime power. For if
p/" . and JV-: S; CK is the group containing .V of index then
V= 1 \1e. and if the s-¢ arc open in the norm topology, then o
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Now let J be the preimage of.V with respect to the projection IK----+ CK.
Then J is open in /K bccau'e av is open in CK (with respect to the natural
topology). Therefore J contaim a group

ui: Ny x Nup.

PES peA
where S i<; a @ufliciently big finite set of places of K containing the
infinite ones and tho,;e primes that divide n, such thath = JkK-. Since
(h :J) =u J al"o contain:-, the group np<c\ K;'* x np_,.dl), and hence
the group

k) = Nk x N up.

pd Pli-\
Thus it is enough to show that CK(S) = I K (S)Kx /K* C; JV contains a norm
group. 1t;the n-th roots of unity helong to K, then CK(S) = NLiKCt with
L=k(:J7<I ), becau,;e of the remark following (4.2). If they do not belong
to K, then we adjoin them and obtain an extension K'IK. Let S' he the set
of primes of K' lying above prime,; in S. If S wa€ chosen sufficiently large,
then fK, = Jf_K'e and CK,(S%) = with L' = K" (). h)
the above argument. Using chap. V. this give€y on the other hand that
NK' KUK:(S)) C; h(S), sothat

NewCu = NK'IK(N1-1K-C1.) = NK-1K<CK,(SY) t; CK(S).

Thi-. 1Ini,;he\ the proof. [m]

The above theorem iscalled the "existence theorem" of global clas€ field theory
becaugpe ib main assertion is the ence, for any given closed subgroup
IV of finite index in CK, of an ahelian extension LIK wchthat NLIKCL =
JV. Thi:- exten@ion L i€ the class field for .,V. The exi€tence
theorem gives a clear overview of all the abelian extensions of K once we
bring in the CI( of CK corrc:-,ponding to the modules
m = npt- P are clo@ed of finite index by (1.8), and they
prompt the following definition.

(6,2) Definition. The class field K™K for the congruence subgroup CI( i€
called Ihe fa) class field mod m.

The Galois group of the ray cla:-s field i€ canonically isomorphic to the
ray class group mod m:

G(K™K) "CK/C @
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One has
mim' => Km<;; Km',

hecau@e clearly C!,! 2 er;/. Since the closed subgroups of llnilc index in CK
are by (1.8) precl€ely those subgroup€ containing a congruence subgroup
CI(, we get from (6.1) the

(6..3) Corollary. Every finite abelian extension LIK is comained in a ray
cla.@s field KmIK.

(6.4) Definition. Let LIK be a finite abelian extension, and let )vt. =
N, 7KCl The conductor f of L IK (or of.1'vi) i.€ the gcd of all modules m
suchthat L <;; K™ (ie., C/2 <;;.VL).

K)I K is therefore the :-mallc@t ray class field containing LI K. But it is
not true in general that mi€ the conductor of K™IK.In chap. V, (1.6), we
defined the conductor fp of a p-adic extension Lp IKp for a finite place p, to

be the smallest power fp = pn such that U€¥l C;; NL.IKpL€. For an infinite

place p we define fo = I. Then we view fa€ the replete ideal f TTplcx, p®and
obtain the

(6.5) Proposition. !ff is the conductor of the abefian extension LIK,1:md fp
is the conductor of the local exten. @ion Lp IK p, then

Proof: Let J\' = NLIKCt, and let m = TIP p"P be a module (11p = 0
for PIX). One then has

C/(<;;JV{=:}HIm and TTfplm{=:}pIP"P forallp.
P

So to prove f = TIP fp, we have to show the equivalence
C@®-' <;; N ==3 fplp"P forall p.
It follow€ from the identity JV N K; = NpL; (ee (5.8)):
CI(<;.V {=3@E If =ii E"./) foraEh
,(@ = 1 mod p"P= (CI'p) EJVNK; =NpL;) forall p
{=1} (ap E UtP*= ap E NpL@) {=::3 U;"" ¢;; NpL; {=::} fplPllp.
[m]

<
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By chap.V, (1.7). the local extension LplKp, for a finite prime p, i:-
ramified if and only if its conductor fp is -1- I. This continue€y to hold al€o for
an infinite place p. provided we call the extension LpIKp unramified in this
case, m, wedid in chap. Ill. Then (6.5) yield€ the

(6.6) Corollary. LeiLIK be a finite ;.ibelian extension and f its conductor.
Then:

pisramitiedinl  ¢=::3  PIf-

In the case of the base field Q, the ray class fields are nothing but the familiar
cydotomic fields:

(6.7) Proposition. Let m be a natural number and m = (m). Then /he ray
clas.€field mod m of (fJ is 1hc field

O™ = Qlm]
of m-th roots of unity.

Proof: Let m = nfvh. Pn". Then (8 = nrr.._, U?l') X IR@. Let

m = mphe Then U} is contained in the norm group
of the unramitied extension but also in th; norm  group
according to This means, 3, thatevery

isanorm of 5ome idele of Q(/L111). Thu@ C@ £ On the

Ciuef

(Z/mz)* by (1.10). and therefore

(Co, cO) € [1(M,,), G] €(Co, NCO™*"1)-

so that C1) = NCo_,(s..). and thi5 proves the claim. n

According lo thi€ proposition. one may view the general ray clas€y fields
KmIK as analogues of the cyclotomic fields Q(pi11)1:{]. Nonetheless, they
arc not made to take over the important r61e of the latter because all we know
about them i€ that they exist. but not how to generate them. In the case of
local fields things were different. There the analogues of the ray das€ field€
were the Lubin-Tate extensiom, which could be generated by the division
points of formal group€ - a fact that can-ies a long way (€ee chap. V, *5).
This local discovery docs, however, originate from the problem of generating
global cla@s fields, which will be discussed at the end of this section.

Note in pas€ing that the above propoition give€y another proof of the
theorem of Kronecker and Weber (sec chap. V. (1.10)) to the effect that
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every finite abclian extension is contained in a field Q(11,,,)IQI, because
by (1.8) the norm group lie€ in €ome congruence €ubgroup CQ,
m = (m), so that L € QI(l117)

Among all abclian extensions of K, the ray class field mod | occupies a
special place. It is called the big Hilbert class field and has Galois group

G(K'1K) € Ctk

By (1.11), the group CII, is linked to the ordinary ideal class group by the
exact sequence

|t dJOi-——+ TT R¥JIH:
preal

The big Hilbert class field has conductor f = 1 and may therefore be
characterized by (6.6) in the following way.

(6.8) Proposition. The big Hilbert class field is the maximal unramified
abelian extension of K.

Since the infinite places are always unramified, this meam that all prime
ideals are unramitled. The Hilbert class field, or more precisely, the "small
Hilbert class field", is defined 10 be the maximal unramified abelian extension
H IK in which all infinite places <;plit completely, i.e., the real places stay real.
It satisfies the

(6.9) Proposition. The Galois group of the .@maJJ Hilbert class field HI K is
canonically isomorphic to the ideal class group:
GH|K) = Cly |

In p<-L.rticular. the degree [H : K J is the class number hK of K.

Proof: We consider the big Hilbert class field K *.K and, for every infi
place p, the commutative diagram (see (5.6))

K Kikol G(Ke@IKp)

1 1

1K J 13 K> @ G(K'1K).
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The &mall Hilbert cla€s held HIK is the fixed field of the subgroup Gx=
generated hy all G(K€1Kp), PIXJ, Under ( . K'IK)Ihi5 i5 the image of

(N K)BK/IK 1 @K /5K,
po
where /;,,., = TTP1~.K ; x TTPt=Up- Therefore by (1.3),

GUHIK)Y = G(K' 1K)/ G = Ic/17K" = iy

Remark: The small Hilbert class field is in general not a ray da@€ field
in tenns of the theory developed here. But il i& in many other textbooks
where ray class group€p and ray class field:,, arc defined differently (€cc for
imtance [1071). Thi:,, other theory is obtained by equipping all number liclds
with the Minkow:, ki metric

XK = (r E Hom(K,Q)),

a= lifr =T a = {ifr # T. Araycla,:, group can then be attached
to any replete module €

me@np's,
P

wherenp E Z. np 2: 0, and np = 0 or= 1 ifploo. The groups utpJ attached
to the metrized number field (K, ( , )K) .ire defined by
14p™, for 1ip> 0,and up for nu = 0. if p 1,
U“’”) B R, if pisreal and 1p =0,

L ifp j,realand 1p = 1,
C* =K. ifpiscomplex.

The congruence suhgroup mod m of (K. (, )K) b then the subgroup
CR=1IgK" /K~ of CK fomlcd with the group

r,=TIU,;»
P

and the factor group is the ray 1fas.1 group mod rn. The rav (los,1
{tcfd mod m of (K. ( ., again the clas5 field of K corresponding to
the group C; s;;; C«.  Asexplained in chap. I, QJ. the infinite plilcC€ p have
to be comidcred as ram!fied in an extension LIK if Lp # Kp. Likewie.
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the conductor of an abclian extension LIK, i.e., the gcd of all module€
m = np )* such that CI( 5::; NL1KCL, is the replete ideal

@ m

P
where now for an intinite place p, we have fp = pn@withnp = 0ifLp = Kp,
and np = 1if Lp # Kp, Corollary (6.6) then continues to hold: a place pis

ramified in L ifand only if p occurs in the conductor f.

This entails the following modifications of the above theory, as far as ray
clal,s field:-. arc concerned. The ray cla5€ field mod | is the .1mafl Hilbert
class field. It is now the maximal abelian extension of K which is unramitied
at all places. The big Hilbert class field is the ray clas€p field for the module
m = nPI"" p. In the case of the base field Q, the field 1Q(t) of m-th roots
of unity i1, the ray class field mod mpcx,, where pc,c is the infinite place. The
ray cla@5 field for the module m become€y the maximal real subextcn€ion
1Q((+ (—1), which was not a ray class field before. This is the theory one
findl, in the textbooks alluded to above. It corrc€pomb to the number field>
with the Minkowski metric. The theory of ray class licld€ according to the
treatment of this book is forced upon u€ already by the choice of the standard
metric {X, y) = Lr.,r.Yr on Ki,: taken in chap. I. S5. It is compatible @ith the
Riemann-Roch theory of chap. Ill, and has the advantage of being simpler.

Over the field Q, the ray class field mod (m) can be generated, according
to (6.7),  them-th root€ of unity, i.e., by special valuel, of the exponential
function The que@tion 5uggested by this observation is whether one
may con@truct the abelian extensions of an arbitrary number tield ina
similarly concrete way, via special values of analytic functiom. Thb was
the historic origin of the notion of cla55 field. A completely sati €factory answer
to thi€y question has been given only in the ca€pe of an imaginary tJUadratic
tield K, The result<, for thil, case are subSutned under the name of
Kronecker-€ Jugendtraum (Kronecker'l, dream of hi€ youth). We will briefly
describe them here. For the proof€, which pre@uppose an in-depth knowledge
of the theory of elliptic curves, we have to refer to [96] and [28].

An elliptic curve is given as the quotient E = CJI' of C hy a complete

lattice 1' = 2y + Zcv2 in This is a toru5 which receivel, the @tructure of
an algebraic curve via the Weierstrass p-function

P =po= sy o [ L]

PP 2t e T @l

where "= I""- {OJ. p(:::) i€ a meromorphic doubly periodic function, i.e.,
1;,,(z+Q)=1;;i() forall WwE /,
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and it salisllcs, along with its derivalive p'(:), an identity

9 =49 = o @) — 2]

The constants gi,g1 only depend on the lallicc T, are given by
92 = g2(I) =60I\,c;e0 €, g3 = g,(I') = 140LW#O p and,;/ may
thus be interpreted a€p functions on C/ I'. If one takes the finite set

S i; I';r of poles, one getsa bijection

C/r S {p eC?| Y =dd—gx—gm). zr— (pG).9'@)

onto the affine algebraic curve in by the equation y' =
axt - - g1 This give" the torus the structure of an algebraic
curve over of geom I. Animportant rélc is played by the j-invariant
203%g3 . .
JEY= j(I) = ng with LI =gi - 27g{.
It determines the elliptic curve E up to isomorphism. Writing generator"
wiwp Of r in ~uch an order that r = 0>,/<o; lies in the upper half-
plane H, then )(£) becomes the value j(r) of a modular function, ie.,
of a holomorphic function j on IHI which is invariant under the substitution

r i+ ;.2 forevery matrix (; 1) ESL2(2Y).

Now let K £ C be an imaginary quadratic number held. Then the ring
ok of integers forms a lattice in C, and more generally, any ideal a of ok
doe€ as well. The tori C/a constructed in this way are elliptic curves with
cvmple.t multipimtion. Thbmeans the following. An endomorphism of an
elliptic curve E = IC/I' b given as multiplication by a complex number :
such that ZI" £: I'. Generically, one has End(£)=  If this is not the case,
then End(£) @ IQ i€ necessarily an imaginary quadratic number lleld K,
and one @ay4€ that this is an elliptic curve with complex multiplication. The
curve€p I1C/a are obviously of thb kind.
The con€equences of these analytic investigations for cla-.€ field theory are
the following.

(6.10) Theorem. Let K be an imagimlfy quadratic number field and a an
idea/ of o K. Then one nas:

(i) The l-invariant i(a) of IC/a i€ an algebraic integer which depends only
on e ideal cas.eJ'l of o 11nd will therefore be denotea by j (ft).

(ii) Every j(a) generate.@ tile Hilben cla>"> field over K.
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(iii) if ay, ali are rcprel,entatives of the ideal class group CIK, then
the numbers j(a,) are conjugate to one another over K.

(iv) For almosl all prime ideals p of K one has
e =ik 'l

where i E G(K ( j(a))IK) is the Frobenius automorphism of a prime ide,ili:j]
of K(j(a)) above p.

Note that for a totally imaginary field K there is no difference between
big and small Hilbert class field. In order to go beyond the Hilbert class field,
i.e., the ray class field mod |, to the ray cla@€ fields for arbitrary modules

m cf. I, we form, for any lattice I' i; the Weber function
23 Pr(,). if X2.<q'0,
r.(z) = -2°3°@pj'(). if,R2 =0,

12HJ4 ifg, =0.

Let.It E C/ K be an ideal cla% chosen once and for all. We denote by W the
classes in the ray class group CI{( = .!'//!P;' which under the homomorphism

CA(_---,. CIK

are sent to the ideal class (m).fl-*. Let 11 be an ideal in .It, and let b be an
integral ideal in Ji*. Then 116m-1= (a) isa principal ideal. The value r.,(a)
only depends on the class yte, not on the choice of a, b and a. It will be
denoted by

(") = T4(a).

With the€e conventions we then have the

(6.11) Theorem. (i) The invariants r(It), .. , for a fixed ide:il
clagps fl, are distinct number\ arc conjugate over the
llilbert class field K * =

(ii) For m1 arbitrary .W, the field K (j(f1), r(W)) is the rny ci,-1.ss field mod m
over K:





K" € K(iUO. r(1)
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Exercise J, Let he the big, and HIK the small Hilbert field. Then

G(K1D)::.: . where r 1€ the number of real place€. and s drl-

Exercise 2. Let d > () be s4uarefree, and K = Let f he a totally
fuml:tmental unit of K. Then one ha@ [K * = or =2 according a@
=-1 or=\.

Exercise ]. The group (CK)" = /x)"K /K" 1s (he MIEISCCUON OF INC RO groups
n1 ikew of all abellan extengpiond”.|K of exponent 7.

Exercise 4. For a number field K. local Tate dudiity (“cc chap. V, € 1, exerel"c 2)
yield@ a ,0,-d,,<eo,cmc pairing
*) OH'(Kp,z/nZI x 111} (Kp./1,,)--;. 'E/n.'Z

" '
of locally compact groups, where the Testricted products arc taken with re@peet to
he subgroups H,, (K. Z/nZ), vesp. H\(Ky jta). For X = (Xp} in the fir@1 and
v = () in the second product, it is given by

(x.a) = & yxp(Lrp, Kpikp)-

(i1) If LIK ha linilc extension. then one ha€ a commutative diagram

1H' U Z/nZy x OH'g<nn,) 'Z.Inz
W ©
TH"(Kp2/0Z) x O HikppJd zn12.
o "

(iii) The images of
H\K,Z/nZ)--,. | H'(Kp LinL)
i

and

11"(K.11/1) (I)H](Kp.u")

are mutual orthogonal complement€ with rc€@pecl to the pairing (¥)

Hint for (iii): The cokernel of the econd map 1€ and one
ha" HYK,z/11Z) = lom(G(LIK),Z/nZ) where LIK 1" maxima! abelian
exten"ion of exponent n.

Exercise 5 ((ilobal Tate Dualit€'). Show that the statement" Vi vASicine = vatvin w
an arbitrary finite (;As-module ;\ m@tead of Z/nZ.and A'= Hom(A. K*) instcad
ofp,..

Hint: upe exercise" 4-8 of chap. 1V, *3, and exercise 4 of chap. V*, 1
Exercige 6. It S is a linite "et of place€ of K, then the mdp
HY(K,Z/nZ) -. 0 H(Kp.Z/117'.))






P
is @urjectlvc if and only 1f the map
H( )5 T HKp )
'
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is injective. This is the case in ifclther the exten"mn IIK i, cyclic,
n=2m, (m,2y=1,o0ril § not contain all place€ pl2 arc nonspl1t in
Kiuar) (see § 1, exercise 2).

1<:xercise 7 (Theorem of crinwiiny. If the la@pl condiuon of exercise 6 i\ \ati@lied
for the triple then. extensions I,u. KP for p € S, there
exl\ts a has tpIKp a€p a completion for p ES,
whiCh satisties the identity of degrees

[L:K]=sem{[Ly : Kpl)
(@ee abo ['0J. chap. X, *2)
Note: Let G be a finite group of order prime to #u(K), let She a finite \et or
places, and let L Ky, p E'S, be given GalOls exten€lon, whose Galoi€ groups c;e
can he embedded into G. Then there exi€t\ a Galol., cxlcmion LI K which on the
one hand has Galois isomorphil- to G. and which on the other hand has the
given extensions i.. completion€ ("ee 1109]).

§7. The Ideal-Theoretic Version of Class Field Theory

Class field theory has found its idele-theorelic formulation only after it
had been completed in the language of ideals. f-irom the very start, it was
guided by the desire to clas"ify all abelian exten"ions of a number field K.
But al first, instead of the idele class group CK, there wa€ only the ideal
ela:c. group CIK at hand to do thi€. along with its subgroups. In tenn€ of
the insights that we have gained in the preceding section, thil> means the
restriction to the subfields of the Hilbert class field, i.e., to the unramificd
abelian cxtcnsionl> of K. if the base licld is Q, this restriction il> of course
radical, for Q ha€y no unramitied extension:c. at all by Minkow"ki\, theorem.
But over :=Q. we naturally encounter the cyclotomic fields QUImIL:Ql with
their familiar isomorphi@ms G(Q(11m)IIQ) ;.: HUL'R1(-11 WF11nl
realized, a€y was already mentioned, that the groups and (Z/111Z)* are -
with a grain of salt - only different in€tances of a common concept, that of
a ray cJa€., group, which he defined in an ideal-theoretic way a€p the quotient
group

cfk = J'tt/ Py
of all ideals relatively prime lo a given module m, by the principal ideals (a) with
a = | mod m, and a totally positive. He conjectured that this group

Cl@, along with its ._ubgroup€y. would do the same for the @ubextemions
of a "ray class field" K"K (which at first \“:a€ only po<tulalcd lo exist)





al> the ideal dal>s group CIK and ih €ubgroups did for the wblield€ of the
Hilhert clap., (icld. Moreover. he @tated the hypothesis that every abclian
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extension ought lo be captured by such a ray cla5s field, as wa€ rngge@ted
by the case where the bagpe field is Q, whose abelian extensions are all
contained in cyclotomic fields by the Kronecker-Weber theorem.
After the seminal work of the mathematician = P111url’  FcRnVANGIFR
144], these conjecture€p were confirmed the Japanese arithmetician Tn.11
TAKA<a (1875-1960), and cast by EMmIL (1898-1962) into a
definite, canonical form.

The idelc-theoretic language introduced by Cm v.iitH  brought the
simplification that the idcle da€ys group CK encapsulated all abelian
extcn@ion€ of LIK at once, avoiding choosing a module m every time
such an extension was given, in order to accommodate it into the ray cla@f>
field KmiK, and thereby make it amenable to class field theory. The classical
point of view can be vindicated in term5 of the idele-theoretic version
by looking at congruence €ubgroup5 CK in CK, which detlne the ray clasf>
field5 KmIK. Their wbfields correspond, according to the new point of view,
to the groups between CK and CK, and hence, in view of the isomorphism

CKI/CK €CI;_.

tothe subgroups of the ray class group CI(.

In what follows, we want to deduce the clasbical, ideal-theoretic ver5ion
of global class field theory from the idcle-theoretic one. Thi€ i€ not only an
obligation towards history, but a factual necessity that If, forced upon ut, by
the numerous applications of the more elementary and more immediately
accessible ideal group€.

Let LIK be an abelian extension, and let p be an unramified prime
ideal of K and 'I3 a prime ideal of L lying above p. The decompogition
group G(L<+1IKp) £ G(LIK) i€ then generated by the cla@5ical Frobenius
automorphism

9o = (ry. Lpl K]
where Jtp is a prime clement of kp. As an automorphism of L, (op is
obviou@ly characterized by the congruence
(opti = ot mod'l3 for all aEoL

where q is the number of element€ in the rel>idue class field of p. We put

)






§7. The Ideal-Theoretic Vergyion of Cla@€ Field Theory 407

Now let m be a module of K such that L lies in the ray class field mod m.
Such a module is called an module of definition for L. Since by (6.6) each prime
ideal pf mis unramilied inL, we geta canonical homomorphism

1R o sLka

from the group 1;* of all ideal:;
putting, for any ideal a= ITP

(@J@rHOr

(@) s called the Artin symbol. If p € I'JF isa prime ideal and J7p a prime
element of Kp, then clearly

of K which are relatively prime to m by

PO @qarr),LiIK).
if {rrp) ECK denotes the class of the idt'le (... I, Lrrp, I, I. ..).
The relation between the idele-theoretic and the ideal-theoretic fonnulation

of the Artin reciprocity law is now provided by the following theorem.

(7.1) Theorem. Let LI K he an abelicm extension, and let m be a module of
definition for it. Then the Artin symbol induce. € a sur:fective homomorphi.@m

(@) .cl; - cww

with kernel Hm/P;', where Hm = (NL1KI?')P
commutative dil.Jgrnm

, and we have an exact

G(LIK) = |
m "

- wmwer @ cru; _j-=L.., Gukie

Proof: In* I, we obtained the isomorphism (): CK/Cf!---+ CtK = .1JI'/PJ!"

by €@ending an idele c@ = (ap) to the ideal (a) = NPt= pvpwp). Thi5
isomorphism yields a commutative diagram

CK/Cfl € G(LIK)
I ,l [»
'
clKk == ==+ G(uK),
and we show thal | i€ given by the Artin symbol.
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Let p be a prime ideal not dividing m. JTp a prime clement of «kp,
and ¢ ECK/CK.! the cla@s of the idClc (rrp} = (. 1, 1.JTp, I, I, ... ). Then
(c) =p mod Pt and

(DO LIKISCT).LIked-P'<. )

Thi€ shows that f: JK/PJF--+ G(LIK) is induced by the Artin symbol
(1c..IK) : Jf(--+ G(L IK), and that il is surjective.

It remain@ to €how that the image of NL KCr. under the map
() CK - JK/Pf is the group H'n/Pp. We view the module
m = Tiptc,., e m, a module of L by wbstituting for each prime ideal p
of K the product p = n".1-IIP 'p"-+<i". As in the proof of (1.9). we then get
cL= I{m)L*/L*, where t}m) = {a E IL lu<p E for ‘Plmex:i}. The
clements of

NLIKCL = Nr.1Kum®)K*/K.,

are the classes of norm idelcs nNLIK (a). fora E t{ml. As

NLKUp = T NL+ K, (a13)
"PIP

(see (2.2)), and since vp(NL'l Kp(ai:p)) = (pcc chap. 111, (1.2)).
the idele Ni.iK () is mapped by () to the
(N11K(a)= =nik( N - vp@pn.
X
Therefore the image of N1.ikcL under the homomorphism ( @ CK —+
J'flIPr;, is precisely the group (NL1KIfJPR'JP;* g.e.d. D

(7.2) Corollary. The Alti1l symbol ( LA, fi_.ir a E 1;-, only depends on
the c/as€p a mod P'JF". It deJincs an isomorphism

(10.) s

G(LIK).

The group Hm = (NL1.1KJt)P;" s called the “idea{ group defined mod m"
helonging to the extension tlK. From the existence theorem (6.1). we sec
that the correspondence /, i+ Hm is 1-1 between subcxtensions of the ray
cla% field mod m and c.;uhgroups of 1;;' containing P;'.

The most important consequence of theorem (7.1) is a precise ana[y5i5
of the kind of decomposition of any unramified prime ideal p inan abelian
extension LIK. It can be immediately read off the ideal group Hm Sr,
which determines the field L as class field.
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(7.3) Theorem (Decomposition Law). Let LIK be an abelian extension of
degree n, and let p be an unramified prime ideal. Let m be a module of definition
for LIK tiw.t is not divhible by)) (for instance the conductor), and let Hm be
the corre. @ponding ideal group.
Iff  is the order o(p mod um in tile class group I1J'/ Hrn, i.e., the sma/lc @/
po@ilive integer @uc/] that
ple Hm,

then p decompose., in |, inw .i product

p=%%

ofr = 111.f distinct prime ideals of degree f overp.

Proof: Let p =€), - be the prime decomposition of p in t. Since
pis unramified, the €' areall distinct and have the same degree .f. This
degree is the order of the decomposition group of ,P, over K, i.e., the order
of the Frobeniw, automorphism pp = (MK). In view of the i@omorphism
A1JJ/Hrn;,, U(LIK), thi€ is also the order of p mod H™ in J';."/Hm. Thi€
linishes the proof. D

The theorem @hows in particular that the prime idcab which split
completely arc precisely those contained in the ideal group //f, if fis
the conductor of LIK.

Let us highlight two special cases. If the base field is K = @ and we loo}

at the cyclotomic field the conductor i€ the module m = (m),
and the ideal group coccesr,on,Jmg to (Q(.Lm) in JQ_' is the group PB'- A@
JJIP@\ ;. (ZImZ)* (sec we obtain for the decomposition of

rarionl'l primes pf m, the law which we had already deduced in chap. I,
(10.4), and in particular the fact that the prime numbers which €plit completely
are characterized by

p= | modm.

In the case of the Hilbert class field LIK, i.e., of the field in€idc the
ray class field mod I in which the infinite places €@plit completely, the
corresponding ideal group H @ JK = JK Ihe group PK  of principal ideals
(€ee (6.9). This give€y us the strikingly simple

(7.4) Corollary. The prime idcah of K which split complc!Cly in the Hilbert
cl:.1ss field arc preci.@ely the principal prime ideals.
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Another highly remarkable property of the Hilben class tield is exprc'>Sed
by the following theorem, known as the principal ideal theorem.

(7.5) Theorem. In the Hilbert class field every ideal a of K becomes a
principal ideal.

Proof: Let K;iK be the Hilberlclass field of Kand let K,1K; be the Hilbert

class field of K1. We have to €how that the canonical homomorphism
h/PK--—-+ JK1/PK1

istrivial. Hy chap. IV, (5.9), we have a commutative diagram

- LKUNK2KICK2 - G(KiK1)
T v
- ck/NK'KCKl - G(K,IK),

where i i5 induced by the inclusion CK S; CK;. It is therefore enough to
show that the transfer

Ver : G{K |K) — G(K2|K))|

is the trivial homomorphism. Since K1]K is the maximal unramified abelian
extension of K in which the infinite places split completely. i.e., the maximal
abelian subex.temion of K2IK, we -.ee that G(K21K1) is the commutator
subgroup of G(K,1K). The proof of the principal ideal theorem is thus reduced
to the following purely group-theoretic result.

(7.6) Theorem. Let G be a finitely generated group, G' its commutator
subgroup, and G" Ihc commutator subgroup of G'. ff (G : G') < oo, then
the transfer

Ver: G/G*--+ G'/G"
is the trivial homomorphism.

We give a proof of this theorem which it-. due to ERNST wir1 1141]. In the
group ring ZfGlI = wreG nrra Ina E Z}. we consider the augmentation
ideal le;, which is by definition the kernel of the ring homomorphism

Z[G]--+ Z, Lnaa i Lna,
For every subgroup H ofG, we have Ju S; I(;,and {T - 11TE H.r#,1)

is a Z-basis of /ff- We tirst establish the following lemma, which also has
independent interest in that it gives an additive interpretation of the transfer.
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(7.7) Lemma. For every subgroup H of finite index in G, one has a
commutative diagram

G/G' —— — & H/H
bl ¢ bl ¢
Ic;/n,, & U1l + IgIH)IInIH,
where the homomO1phirnls 8 are induced by a i—+ 80 = a - |, and the

homomorphiMn S i€y given by

s(i. mod t1,) =x L p mod Ic;IH,
wR

for ;:1 system of representatives of the Jell cosets R 3 | of G/ H.

Proof: We first show that the homomorphism

HIH 5 (1 + Ig1) /1614

induced by r r+ 8r = r - | has an inverSe. The elements p8r, r E H,
r #- 1, p ER, fonn a Z-basb of IH + le IH. Indeed, it follows from

pOr =Sr+ 8p8r
that they generate /H + Ic lif , and ii

O=1L np,rp8r =L np.r(Pr - p) = L np.rPT - L(an nP,
pt ot
then we conclude that = 0 because the pr, p are pairwise distinct.
Mapping p8r to r mod , we now have a surjcctive homomorphism
11 + WLt HH
It sends E /r;IH to rirr* 'r-* == | mod H' because O(pr)dr =
p8(r'r) - - Or. It thus induces a homomorphism which is inverse to
(*). In particular, if H = G, we obtain the isomorphism G/G'€ Ic;/I<€--
The transfer is now obtained al-
Ver(o mod G') = flap mod H-
/€CR

where op E H is defined by op = pap, p E R. Ver thu€ induces the
homomorphi€m

S da/1E — Un + gl eIy
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given by S(8cr mod I[;) = LpecR Sap mod le I+- From ap = p'ay follows
the identity

8p + (8a)p = 8ap + 8p"+ 8p'8ap.
Since p' runs through the <iet R if p doe€y. we get a:-. claimed

s@p mod tj) = L,8ap = L,(0a)p =0a L, pmod fey11 cl
HCR p<=R

et

Proof of theorem (7.6): Replacing G hy G/G", we may as:-.ume that
G" ={I}. i.e.. that G' is abclian. Let R 3 | be a system of representatives
of left cu@ct€ of G/G'. and let ai, ,an be generators of G. Mapping
c=(0,....0.1.0..... 0) E zn tor,- we get an exact sequence

Q . 2"@7L-GIG" +1.
where | is given hy an n x n-matrix (m,A) %ith det(m,i.) = (G : G).
Consequently.

TTw re=1 with r@e G

The formulae 8(xy) = ()x +8r+Ox8y, 8(-\") = -(Ox)x-'yield by iteration
that

ST o/ w) = Y (Gain =0,
b

iel

where fl,!,. = m,1,. mod le;. In fact, the rl. arc product€ of commutator-, of the
o, ando J’ We view (,d a;. a matrix over the commutative ring

Z[GIG') @ ZIGYZIGC;,

which gives a meaning to the detenninant p = det(p,1,.) E Z[G /G']. Let (A1.J)
be the adjoint matrix of (11,d. Then

(Sopp =3 (80 m,m1 = 0mod /c;Z[G liee,
ik

so that (8a)/L =c O mod /c;Z[G]lc;+ = I0lc- for all a. This yields

tL= L pmodZ[Gllc;e.
PECR

For if we putp= LpFN npP, where P = p mod G' then forall & E G/G',

au=Ln 1BP=
L]
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This implies that all nr are equal, hence /L = m LPR p mod Z[GJ/c;, and

W, =det(m;A} = ((3: GY) = m(G: C.;) mOO le;,

we even have m = I. Applying now lemma (7.7). we sec that the transfer i€
the trivial homomorphism since
S(8amod 13) = Ocr ., p=— (lia)tL = 0 mod /GIG" D
pet/

A problem which i€ closely related to the principal ideal theorem and
which wa€ first put forward by P1111 II'" FvrmaiH;UR is the problem of the
class field tower. This i€ the question whether the class field tower

K =Kof" Kif" K2 £" K, £".

where Ki+i isthe Hilbert class field of K,. stops after a finite number of
sleps. A positive amwer would have the implication that the last field in the tower
had cla€s number | w that in it not only the ideals of K. but in fact all its
ideals become principal. Thi,; perspective naturally generated the greatet
intere@t. But the problem. after withstanding for a long time all attempts to

©olve it, was finally decided in the negative by the Russian mathematicians

E.S.Gmonand I.R. S,11ARn1t in 1964 (see [48). ]241).

Exercise 1. The deeompo.\ition Jaw for the prime ideals p which arc 1wli(fied m an

abelian LIK can be tormulated like this. Let f be the conductor of LIK,
Hr the ideal group for L. and //p the \Jnalle@t ideal group containing /1 ot
prime top.
Itr = (Hp:// fyand p* i\ the smallc€t pov.-er or p which belong\ to Hp, then
pe (1, ..M
where the ' are of deg-rec f over K. and1 = 1= L KL

Hint: The etas€ tield for Hp i€ the inertia tield above p.

The rollowing exerche€ 2-6 concern a non-abdian example of E. Aull.€@-

Exercise 2. The polynomial =X X+ i\ irreducible. The dt€criminant of
a roota (le., thedl\cnmirnmt i\ d =19+151.

Hint: The dl€@criminant of 1 root of X' + aX +hi\ S'h* + 28yt
Exercise J. Let k ={):'(a). Then Z[a] i€ the rmg 0, of integer\ of/.:..

Hint: The dl€ernninm! of Zia | e4uab the di€crirnmant of because on the
one hand, both differ only hy a and on the other 11 1, 4u.lrel'rec.
The tran@ition matrix trom 1.a, to an intcgrnl ba@i, w. or ¢t s
therefore invertible over
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Exercise 4. The dccompoition field K 10' of {(X) ha€p as G;;lois group the symmetric
group6, i.e.. it i€ of degree 120.

Exercise 5. K has cla@€ number |.

Hint: Show, using chap. exercise 3. that every ideal cla€s of K contains an
ideal a with \Jt(a) < 4. then a ha€) to be a pnme ideal p such that
t(p) = 2 or 3. Hence or = 2/3Z, 50 I ha@ a root mod 2 or 3

which is not the case.

Exercise 6. Show that K 1Qi(v'197sf) i€ a (non-abclian!) unramilied extension.

Exercise 7, For every Glllois cxtengyion LIK of finite numher field €. there
exist infinitely many finite exten@lon€ K' €uch that K' = K. and @uch that
LKYIK' 16 unramified.

Hint: Let S be the @et of ramified in LIK. and let = Kp(ap). By the
approximation theorem, an algebraic number a every pES, is
clo@c to when embedded into Kr- Then 1 Kp(a) by Kra€pncr'€ lemma,
chap. 11, exercigpe 2. Put K' = K(a) and that LK'IK' is unramified. Tu

©how that a can be chmen @uch that L n K' = K use CU). and the fact that G(LIK)
i€ generated by elements of prime power order.

§8. The Reciprocity Law of the Power Residues

In clas field theory Gaus:;.'s reciprocity law meets its mo€t general and
definite formulation. Let n be a positive integer :::_ 2 and K a number field
containing the group JL110f 11-th roots of unity. In chap. V, €3, we introduced,
for every place ).J of K, then-th Hilbert @ymbol

K x Ko e

(

It is given via the norm residue symbol by
(aKpEmyIKp vhr= p(' ) e,

Thc€e symbols all fit together in the following productfonnula.

(8.1) Theorem. Fora, h E K* one has
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Proof: From (5.7), we find
biin n " n n n

[11¢ %)]I: [Ma. K (VBNKN]VE = (a. K (VBK)VE = Vb,

v »
and hence the theorem. [m]

In chap. V, S3, we defined then-th power residue symbol in terms of the
Hilbert symbol:

a m.a
(G)=(5%)

where p is a prime ideal of K not dividing n, a E Up, and rr is a prime
element of K11. We have seen that this definition does not depend on the
choice of the prime element n and that one has

a n
(;) =1 < ¢=0o"modp,
and more generally
(@)=a(g-H/nmodu, g=13I(L).

(8.2) Definition. For evely ideal b = npfnp's prime to n, 1111d every
number a prime to b, we define then-th power residue symbol by

()-T1G)"|

Here (;)vp = | when Ilp = 0.

The power residue symbol (*) is obviously multiplicative in both

argument€p. If bis a principal ideal (h), we write for @hurt(*) = (Ti).
We now prove the general reciprocity law for then-th power residues.

(8.3) Theorem. If a,h E K* are prime to each other and to n. then

G =T1(5")

placo
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Proof: If p is prime to /moo, then we have
«h>1p1m (;1 h)xpm (,1 b)
» p v/

where iT i">a prime element of Ku. Fur if we p_uta = un"pia\, then (¥ =1
because u.h E Up. For the same reason, we find

p("'"): | lor p prime toa/moo.

(8.1) then gives

HE =G TLE ™ =G

plar P Pl

()

Ity B
I e
oltahy P ot~ P oo~ P
Here til(h) mcam that p occurs in the prime decomposition of (n). n

Gauss's reciprocity law, for which we gave an elementary proof using
the theory of Gau€ps sums in chap. I, (8.6), in the case of two odd prime
number€y p, |, is contained in the general reciprocity law (8.3) as a
case. For if we substitute, in the case K = ::]), n = 2, into formula the
explicit description (chap. V, (3.6)) of the Hilbert symbol(¥) forp = 2

and p = oo, we obtain the following theorem, which is more general than
chap. 1, (8.6).

(8.4) Gauss's Reciprocity Law. Let K = Ql, n = 2, and let a ;md h be
odd, relatively prime integers. Then one ha €

(2)(2) - o == |

and for positive odd integer. € h, we have the two -\uppleme11t:1ry thcorem8"
—1 bt 2
—Y=(=hT )=
( b ) =h= (h)

For the last equalion we need again the product fommla:






()= TLC = T

P2
P
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The symbol (*) is called the Jacobi symbol, or abo the quadratic
residue symbol (although, for h not a prime number, the condition that the
symbol (*) = 1 is no longer equivalent to the condition that & i€ a quadratic
re©idue modulo h).

In the above formulation, the reciprocity law allows us to compute simply
by iteration the quadratic residue symbol (*), as is shown in the following
example:

40077) ( 65537) ( 25460) ( 2" ) ( 6365)  ( 40077)
| 65837 = 40077 = 40077 = 40077 40077 = 8363 =

1887) (6365) ( 704) ( 4 ) ) (IJIBB7)
(gae= 'laz= 17 1887 LGA7 =- =

(©)9- (@) M &MO-(O-Wo!

Clas€ tield theory originated from Gauss's reciprocity law. The quest
for a similar law for the n-th power residues dominated number theory
for a long time, and the all-embracing an@wcr wa€ finally found in Artin\,
reciprocity law. The above reciprocity law (8.3) of the power residues now
appears as a simple and special comequence of Artin's reciprocity law. But
to really settle the original problem, class tield theory was still lacking the explicit
computation of the Hilbert @ymbols (¥)  for plnoc. Thi€ was

tinally completed in the 1960s by the mathematician Hi 1.Aw1 Blu CK\or
chap. V, (3.7).





Chapter VII
Zeta Functions and L-series

§1. The Riemann Zeta Function

One of the most astounding phenomena in number theory consists in the
fact that a great number of deep arithmetic properties of a number lield are
hidden within a single analytic function, iu, zeta function. This function ha5
asimple shape, but il is unwilling to yield its mysteries. Each time, however,
that we succeed in stealing one of thc5c well-guarded truths, we may expect to
be rewarded by the revelation of some wrprising and significant relation€hip.
This b why zeta functionf>, as well as their generalizations, the L-series, have
increasingly moved to the foreground of the arithmetic scene, and today arc
more than ever the focm of number-theoretic re€pearch. The fundamental
prototype of such a function is Riemann's zeta function

.l
((~<)00| -7
n=in*
where s is a complex variable. It is to this important function that we tum
first.

(1.1) Proposition. The !>Cries ((s) = Lo,f is absolulcly and uniformly
convergent in the domain Re(s) 2: 1+ Ii, for every li > 0. It therefore
represent.€ an analytic function in tiJe h,1lf-pl:me Re(s) > I. One hw, Euler's
identity
Ane@TT--_,
v 1-p

where p runs through the prime numbers.

Proof: ForRe(s) =a 2: I+li,theseriesL;:-'=,11/n'l = LZ;-Q 1/n" admits
the convergent majorant L.}~ I/11‘,8, i.e., ((s) i€ absolutely and unifonnly
convergent in this domain. In order,to prove Euler"s identity. we remind
ourselves that an infinite product 0 an of complex number€011b said to
converge if the €equence of partial products P11= a1+=*On ha"anont:ero limit.
Thi€ is the case if and only if the ,;erie,; L;;---'=1 log011converges, where log
dcnote5 the principal branch of the logarithm (see [2]. chap. V. 2.2). The
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product i,- called absolutely convergent if the series converge:-. absolutely.
In this case the product converges to the same limit even after a reordering
of itstermsa,,.

Let us now formally take the logarithm of the product

|
E@W) =[] ———.
© =T

logNN QL

wn]np

We obtain the :-.erie:-.

It converges absolutely for Re(.,)= a 2: | +0. In fact, 5ince Ip™ 1= p™
MiL+nin, one has the convergent majorant

i ! 2 |
ole! p1+b 20 pleh J I € pitd,

This implies the ab€olute convergence of the product

£(. )on- ~ oo (1:( | 0))

1

In this product we now expand the product of the factors

I |
L=+ p+ 10+
for all prime number€ p1, ... , p.. :S N. and obtain the equality

&, 1 1

(%)

= Y = -
wee=0 (P r

where |:" denotes the sum over all natural numbers which arc divigyible only
N " ' S .

by prime numbers p ::: N. Since the sum L' contain€ in particular the ttrmé

corresponding to all n :.: N.  we may also write

1 ol
,,U\ - Z\ n N;I

Comparing now in (*) the sum L:" with the Serie€ ((s), we get

1
n - L1 e —| = —_
L P PP

where the right hand side goes to t:eroa5 N --+ 00 because it b the remainder
of a convergent :-.erie€y. Thi<, proves Euler's identity. D
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Euler's identity expresses the law of unique prime factorization of natural
numberl, in a 1,inglc equation. Thil, already demonstrates the number-theoretic
&ignificance of the zeta function. It challenge,; us to study its propertie” more
clo5ely. By its definition. the function is only given on the half-plane
Re(s) > I. It does, however, admit an analytic continuation to the whole
complex plane, with the point s = 1 removed, and it satisfies a functional
equation which relatel, the arguments to the argument |- s. Thel,e crucial
fact<, will be proved next. The proof hinge<s on an integral formula for the
zeta function ((s) which arises from the well-known gamma function. This
latter is defined for Re(s) > O by the absolutely convergent integral

[
re)=f e QI
¥

1]

and obcy1, the follo\\--ing rules (,;cc [341, vol. |, chap. I).

(1.2) Proposition. (i) The gamma function is analytic and admits a
merommphic continuation to all ofC.

(i) 11 is nowhere :-ero and has 1,imp/c polesal s = -n, n=0, 1,2, .., with
residues (-1)"/n!. There are no poles anywhere else.

(iii) 11 sati1,fies the fonclional equations

1) r(-1+ 1) =-1I(s),

2) ')l - s) = eiee.

IE)N(s+ v = '2L I'(2s) (Legendre's duplication formula).

(iv) JI hal, the special values 1I'(1/2) = fa, I'(1) = I, I'k + 1) = kI,
k0,12

To relate the gamma function to the Leta function. start with the 1,ubstitution
y . rr?y, which gives the equation

e U T
T ’F(S)T\ =1fe
n?

n

Now sum over all 1 E N and get

e = [ 30 e
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Observe that it is legal to interchange the sum and the integral because

0 I/ iy Rets) Y

" '"1 1r(Re(.1))((2Re(.1)) < oo.

Now the series under the integral,

o) On!Te

arise:- from Jacobi's classical theta series

ool e e 1+ 210 ...,

™
i.e.,, we have R(Y) = %2 (0(iy) - 1). The function

Z(s) = 7 (s /2D¢()

is called the completed zeta function. We obtain the

(1.3) Proposition. Tile completed zet:1 function Z(s) admits the integrnl
representation
26y = ’f(f?(i )
5= 2 ¥

[

The proof of the functional equation for the function Z (s) is based on the
following general principle. For a continuous function f : Ill€ -+ C on the
group [Re of pmiitivc real number&, we define the Mellin transform to be
the improper integral

d1-
L(f 1)@ I f(y)-f(oo))y’-t-
b

provided the limit f(oo) = lim,---cx, f(y) and the integral exi@t. The
following theorem is of pivotal importance, also for later application€y.
We will often refer to it as the Mellin principle.
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(1.4) Theorem. Let .f,g: 11.3;--+ C be continuous functions such that
f(y) =ao + 0(<,-n"), g(_v) =ho+ O(e-cy"),

for y -+ oo, with positive com.rant. c,a. ff these functions 1,atisfy the

equation
r({: J@chevi

for some real number k > 0 and some complex number(' #- 0, then one has:

(i) Theintegrafa L(f,s) and L(f:,s) converge absolutely and uniformly ifs

varies in an :irbitnuy compact domain contained in {s € CI Re(s) > k).

They are Ihercfore holomorphic functions on {s EC | Re(l) > A). They

admit holomorphic continuations to ,  {0k).

(ii) They have .@imple poles at s = 0 ands = k with residues
Rcs.,=ol(.f,s)=-a,, Res,=1-L(j,s)=Chq, resp.
Res,-=nL(i,s) = -ho, Rcl,_=@L(g,s)= C-la,

(iii) They satisfy the functional equation

L(f,.,)@CL(g.k - .).

Remark I: The 1ymbol ,p(y) = O(1/!/(y)) means, a€> usual, that one has
p(Y) = r(y)ijr(y), for ,;ome function c(_v) which stays hounded under 1he
limit in question, so in our case, al, y--+ 0o0.

Remark 2: Condition (ii) is to be understood to say that there is no pole
if ag = 0, resp. ho = 0. But there is a pole, which b simple, if a, #- 0,
re,p. ho#- 0.

Proof: If., varie5 over a compact 1,ubset of C, then the function

a = Re(s), is bounded for y 2:: | by a constant which is independent a.
Therefore the condition f(y) = ao + O(e-cv") the following upper
bound for the integrand of the Mellin integral

1(f(y)-a0))"" IlI::": Be-v'ya+ly-"" B'©,

Y
forall y 2:. 1. with comtanb B. 8" The integral ﬁ’..,U(y)f ao)y'-'dy
therefore admitl, the convergent majorant Ji" ©dy which i1, independent
of s. It therefore converge,; abs_qlutely and unifofmly, for all .1 in the compact
1,ubset. The same holds for fi °(g(y) - I )yt 1dy.
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Now let Re(s) > k. We cut the interval of integration (O,00) into (0, Ij
and (I, oc) and write
1

Ut 9@ JE) -a)y L+ f({y)-a)y dy:
| | 0

For the Second integral, the t-ubstitution y i—+ I/ y and the equation

f(I/y) = Cig(y) give:

1
|7 ooy B =ooY_ ./ f'(—'> t
H @ 0 y T

¥ I I
=0 +cl (gy)- nort o tay - OO

1 k-

'
By the above, it also converges ab5olutely and uniformly for Re(.1) > k. We
therefore obtain ch
LE ) @ -0+ O 4y,
s 1-k
Where

F(D= /[ (®)-a0y+CE®)-hoyy 1@_y -
1
Swapping land g, we see from g(l/y) = c-tif(y) that:

ho C-'a
Lus) = -© +€@ +G()

Where

Gis)= /[(g(y) —b)y* +CTNF ()~ any* ]

1

The integral<, FC<,) and G(s) converge abt-olutcly and locally unifonnly on
the whole complex plane, at-. we saw above. So they represent holumorphic
functions, and one obviom,ly ha@ F(.1) = CG(k-s). Thut-. L( f",s) and I.(g, s)
have been continued toall of C - {0,,q and we have L(f .1) = C (g, A-®).
This finishes the proof of the theorem.

The remit can now be applied 10 the integral (1.3) representing the
function Z(s). In fact, Jacobi\ theta function 0(::) is characterilcd by the
following property.
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(1.5) Proposition. The series

ecney 2 -

112

converges absolutely and uniformly in the domain /z E C | Im() 2: 8),
forevery 15> 0. Il therefore represents an ,malytic function on the upper
half@plane 1-11 = {z EC | Im(z) > 0), and @alisiie.\ the transformation fommla

o-1/c) ©H  0().
We will prove this propol>ition in much greater generality in 93 (1,ee (3.6)),

so we take il for granted here. Ob\erve Ihat if z lies in TI-[ then so does - I/:.
The square rool ZTT is understood to be the holomorphic function

h(z) = ellog/1,

\Vhere log indicates the principal branch of the logarilhm. It is determined
uniquely by the condition:-.

h(@z)?=z/i and h(y)=.Jy> O fory E

(1.6) Theorem. The completed zeta function
Z(s) = n-12r(s/2)(,(s)

admib an analytic continuation lo C, {0, 1}, /Jas simple poles at's = ()
and 1 = | with residues - 1 and I. respectively. and salislies the functional
equation

Z(.J @ Z(1 -<).

Proof: By (1.3), we have

Z25) = %/(9(1‘_\') -

0

l.e., Z(2.) isthe Mellin transfonn
Z(2.) @ Li(.)

of the function f(y) = !0(iy). Since

O(iy) = I+ 2c-irr"( I+ €2 c-rclle-111),
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one has f(y) =}: +0(e-rrl). From (1‘5). we get the transfonnation formula
I i
Fa/yy = 59(—1/1',»-): SR8y =5 ).
By (I .4), L( f, s) ha:,, a holomorphic continuation to C, {0, 1/2) and simple

poles at s = 0, 1/2 with residues -1/2 and 1/2, respectively, and it satisfies
the functional equation

L¢.DeL(! e-)

Accordingly, Z(s) = L(f,.1/2) has a holomorphic continuation to C, {0, 1}

and simple pole€y at 1= 0, | with residue:- - | and I, respectively, and "atisties
the functional equation

L(s)=L(t, @)=L 1-&)=Z(1-.1). L

For lhe Riemann zeta function itself, the theorem give" the

(1.7) Corollary. The Riemann zew function ((s) admits an analytic
continuation to C, {1}, has a simple pole at s = | with residue | and
.2 His/Jes the functional equation

(O -s)  =2(2n)-r(1)cos(¥-)((s).

Proof: Z(s) = JT-f2rc€J2)((s) ha:,, a simple pole ats = 0, bu! :,0 does
r(s/2). Hence ((s) has no pole. Al 1 = I, however, Z(s) ha:, a "imple pole.
and so does ((s), asr(l/2) = .jii. The residue come€y out to he

Re:,,,=1((1) = rrlnro;Z)-1 Re"=i Z(s) = |
The equation Z( | - s) = Z(s) translate:,, into
)
((1-8)=;-r3+ L(@N,
Substituting (1 -1)/2, resp. s/2, into the formulae (1.2), (|

P =2

‘)r(l;zrf) = cos(:.v/zf

2) and 3) gives
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and after taking the ciuotient
r ( )/r (!—'-_,) = 2_mcos M),
2 2 2 2

Inserting this into(*) now yields the functional equation claimed. n

At @ome point during the first month5 of studies every mathematics student
has the supri€pe to discover the remarkahle fonnula

o dn:

It is only the beginning of a sequence:
4

3 % = L,, A f 0: 1 n% et

a=t H 90 =1 N 945 .«
The@e are explicit evaluations of the special value€p of the Riemann Leta
function at the points 1. = 2k, k EN. The phenomenon j, explained via the
functional equation by the fact that the values of the Riemann .teta function
at the nexative odd integer5 are given by Bernoulli numbers. The@e arise

from the function
o
Fo$

and are defined by the series expansion

@ '
F(HeE/o
Their relation to the t:eta function give«€p them a special arithmetic significance. The
lir@t Bernoulli numbers are
| | |
Bo= |, Bl= 9.B2= é H =0, 84=-30, B@= 0, 81, = 42

In general one has 8,..+; = 0 for n 2.: 1. because F(-f) = F(f) - !. In the
clagsical lite@ature, it i, ulually the fu@ction €, which ">erves for defin'ng

the Bernoulli numbers. As F(t) = 7- + 1t this docs not change anythmg

except for B;. where one flmb - € instead of ] But the above definition i€

more natural and better @uitcd for the further development of the theory. We
now prove the remarkable

(1.8) Theorem. For cvcly integed > 0 oneha.,

-kl





a28 Chapter VIL Zern Functions and L-sencs

We prepare the proof proper by a function-theoretic lemma. For f > 0
and a E [E, ocl, we com,idcr the path

Cen=(a.el+ K. +le.a).

which first follows the half-line from a to r, then the circumference
K, = lz111 = e} in the negative direction. and finally the half-line

fromf toa:
<,
[ S— -
& a

(1.9) Lemma. Let U be an open subset of C rlwt contains the path C'i-.a
and afao the interior of K,. Lee G(z) be a holomorphic fonclion on U, /0)
with a pole of order m al0, and let G(t)r"' * (n EN), forRc(s) > €- be
integrable on (0. a). Then one ha®

f G(:1)z"-Ydz = @2rm.i - 1) Je(t)t"'-ldn

(e 0

Proof: The integration doc€ not actually take place in the complex plane but
on the universal covering of

X={(x.a)EC*x iargx==amod2;r)
zand ::'-* arc holomorphic functions on X, namely

PR "(x‘a) — v Dtiog Auxil

Coa =1yt Ket iy

where le@"'= (a.Pj x {0), K, = {n-11t e [0.2;r}, 1\, = [F.a) x (2ir)
in X. We now have

| G(z):,, 1 &= | G111 dt.

f G@):n-'dz = e*u*t » !G(I)tu' idt,

I+,
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=ur
fC(.:).:ll,—l dz= -If G(c:e "k11,-l1c .1(n-hee , dt

K, o

[t

0

Since Re(s) > !;f, i.e.. Re(ns - m) > 0, the la:o.t integral/ (c) tends to zero
ase - 0. Infact, one has = 0. Thi.., give@

f G(2)z** 'dz = (cZin, - IL G(hrit: dt +1e),
t,

and @ince the integral on the left is independent of E. the lemma follows by
passing to the limit a@ e —---,. 0.

Proofof(1.8): The function

c@ =ium tr

is a meromorphic function of the complex variable z, with poles only at
I =2niv,v E;z, v = 0. Bli/k it. the re€idue of (k -1)! F(z)z-J.-1 at 0,
and the claim reduce.€ to the identity

F() =

Resz—o F()e ™ = L / F@)ztldz = _H=h k)'
2mi k—1!
|zi=¢
for O <c < 2rr, where the circle |: | = t it. taken in the positive orientation.

We may replace it with the path -C, = (-x, - Fj+ K. + [-1', - i),
\\--hich tracct-- the half-line from -ex; to -r, followed by the circumference

Kc = /z | [[[ = e) in the posith-c direction, from - to -r, and finally
the half-line from - to -x In fact, the intcgrab over (-oc, - F] and
[-F, - :xi) cancel each other. We now consider on IC the function

d,
H(1)& f F(cic-1¢
i

Here the integrals over {-oo. - F] and 1-t, - ocd) onot cancel each other
any longer because the function ' tit. multivalued. The integration taket-- place
on the universal covering X = {(\,a) E xJR larg., =a mod 2r}
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of as in [ 9), and z,zs~" arc the holomorphic function€ z(x,a) = x,
z'-1(t,a) = o(s—Nluglxl+ie) The integral converge€p absolutely and locally
uniformly for alls EC. It thus defines a holomorphic function on C, and we
find that

Res:=0oF(z)z-€-1 = JH(l -k).
Now substitute i+ -z, or more precgely. apply the biholomorphic
transformation
rp: X----- + X, (x,@) i+ (-A.a-n).
Since Zzorp = -z and
(z'-lorp)(x,a:) I 1(-X.a-;r) = /1-h(i<=gl-l+1a Ml
= -e-m'z' 1(x,a),

we obtain

f F(-2)z'-1 @,

C

where the path Cc= rp-* o(-C,) follow€ the half-line from ootof', then the
circumference K,. in negative direction from pto e, and finally the half-line
from e to oo. The function

G(2) = F(-2)z-1= |€--: =L cle_. - I= ,ticC
has a @implc pole at z = 0 so that, for Re(s) > I, (1.9) yield@

H(s)=-e»"'f' G(2)z 'dz
C

L4 li ° T
=-(erm - e-urs)[ G(H |f =-2i sinns[ G(t)r”.lf'

The integral on the right will now be related to the zeta function. In the
gamma integral

I'(s) = 4' e

we sub&titute r i+ nt and get

x

1 dt
Fi)— = arx 4L
(A)m /(’ I3 .

)
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Summing this over all n E.N yicldr,
1I'(s)((s) & J G(Nrf

o
The interchange of summation and integration ir, again justified hecaur,c

J le-ngIL]_
]

From this and (1.2), 2), we get

2ni
H(s) = -2i sinn:@r(s)((s) = - Ll ((9)-
Since both side€p arc holomorphic on all of C, this holds for alls E C. Putting
s=I-A we obtain, since r(k) = (k- 1),

Res@=0F(z)z-k-I= L HUJIQ=-((1-lQ, qg.ed. [m]
- 1!

2ni

Applying the functional equation (1.7) for ((s) and observing that
1'(2k) = (2k - 1!, the preceding theorem gives the following corollary, which
goes back to Evull

(1.10) Corollary. The values of ((s) at the positive even itltcger. s = 2k,
k=1,2,3,... , are given by
i Qup*

. RPN
[(2) = (=) 2001

2k

The values ((2k - 1), k > 1, at the positive odd integer€ have been
elucidated only recently. Surprisingly enough, it is the higher K -groups K,(Z)
from algebraic K-theory, which take the lead. In fact, one ha€y a mysterious
canonical isomorphism

The image R, of a non.Lero element in K,1- 1(Z) ®;;, Q is called the 2k-th
regulator. It ir, well-determined up to a rational factor, i.e., it is an element
of IJC/Q*, and one has

(2K - 1) a= Ryemod Q@
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This discovery of the Swiss mathematician ARM,INIJ BoRFJ. has had a
tremendous influence on further arithmetical ret-.earch, and hat-, opened up
deep insight5 into the arithmetic nature of zeta function€ and L-series of the
most general kind. Thet-.e imight5 are @ummarized within the comprehemive
Beilinson  conjecture  (t-ee 1117J). In the meantime, the mathematiciam
SPENCCR Ht.OCH and K11LUY,1 Kii.ro have found a complete description of the
special leta values ((2/... - 1) (i.e.. not just a description mod 0:;°1 via a new
theory of the Tamagawa measure.

The zeroes of the Riemann zeta function command special aucntion.
Euler's identity (1.1) shows that one hat-. ( (.1) -::f. 0 for Re(s) > 1. The gamma

function I'(s) is nowhere 0 and has simple polesat s =0. - I. - 2, ... The
functional equation z(s) = z(I - s). i.e..
e NL20((<) @ ,r-1012r( (1= 92 (1 - L) .

therefore showt-. that the only 7eroes of ((s) in the domain Re(s) < O arc
the poles of 1'(s/2), i.e., the arguments s = -2, - 4. - 6. Thee arc
called the trii-ial :croc.1 of ((s ). Other zeroes have to lie in the critical strip
0 _sRe(s) _is 1, :cince ((s) -:f. 0 for Rc(s) > I. They are the @ubject of the
famout-., t-till unproven

Riemann Hypothesis: The non-trivial zeroes of ((s) lie on the line

Re(s) = €~

This conjecture has heen verified for 150 million zeroes. It hat-. immediate
consequences for the problem of the ditribution of prime numbers within all
the natural number€p. The distribution function

rm(x) =#/p prime number _:s x)
may be \'fitten. according to RIEMAAA., as the seriet-.

m(t) = R) - LRrep)
P

where p varies over all the LCroes of ((s). and R(x) it-. the function
| (ogo

RO € 1+ 1
(e ) o

On a microscopic scale, 1hc function rr(,-) is a €tcp-function with a highly
irregular hehaviour. But on a large scale it i€ its a@tounding smoothness
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which poses one of the biggest mysterie<, in mathematic€y:

rr(x)

On thi€ matter, we urge the reader to consult the essay |1142) by bm, 7-1<tH

Exercise 1. Let ah beJUN}lVC’ real number€y. Then the Mellin transform\ ur the
function@ / (v} .md g(y) =/ (a”) satisty:]

Lt 1) =haili(g,.1).

Exercise 2. f*hc Bernoulli polynomials B,(.1.) arc defined by
1
= @Y =F(tr'=/1.C1)e,

so that 8; = B,(0). Show that
B..(N=

Exercise J, R,(1)- B.(t - 1) =/, r L
Exercise 4, For the power sum
S(M)=I'+2"+3"+ +n'
one ha\ ,
nn) = T B0 = B

Exercise 5, Let 11(:-J = H(2z) =
111 the group

Then for all matnce\ y =

fi4) = {(" j) ESL,(ZJ j¢'=0 mud 4)
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one hag the formula

Y=iane, sem.

where

The Legendre @ymhol (€) and the con@tanl id are defined by
) (i) ife<0.a<o,
(5) ; (“m) otherwige.
= [ 1. ifd-= 1 mod 4,

i, ifd =3 mod 4.

Jacobi's theta function i!(z) is thu€ an example of a modular form of weight {
for the group The representation of L-€encs a€ Mellin tran€form€ of modulir
form€, which we introduced m the case of the Riemann Leta function, 1e one
of the hasic tmd €eminal principle€ of current number-theoretic rcsc:uch {see [ 1061).

§ 2. Dirichlet £-series

The most immediate relatives of the Riemann zeta function are the
Dirichlet L-serie5. They are <Iclined as follow€. Let m be a natural number.
A Dirichlet character mod m i'> by definition a character

x@miy- S @l eclilen.
It is called primitive if it does not arise a5 the compo@ite

(Z/mzr- ' (Zniz)* e St

of a Dirichlet character X' mod m' for any proper divi€or m'Im. In the general
case. the gcd of all @uch divisors i€ called the conductor f of X- Sox s
alway<, induced from a primitive character X' mod (. Given X, we define
the multiplicative function x :Z > C by
_ 4 X(nmodm) for(n.m)=L
X = IO for (n,m) -=I-I.

The fifriaf charwter X° mod m, X°(n) = | for (n,m) = 1. X°n) =0 for
(n, m) -=I- I, plays a €pecial role, When read mod |, we denote it by X = I
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It is also called the principal character. Considering it in the theory to be
developed now has the effect of <;Ub€uming here everything we have done in
the last 5cction. For a Dirichlet character X, we fonn the Dirichlet £-series

where € is a complex variable with Re(s) > I. In particular, for the principal
character X = I, we get back the Riemann zeta function ((s). All the re@ults
obtained for thi€ special function in the la@t €ection can be tramferred
the general L-serie" L(x. s) using the same method€p. This b the task of the
pre€ent section.

(2.1) Proposition. The series L(x,.1) converges absolutely and unifonnly in
the domain Rc(.1) :=: I+ 0, for any 8> 0. It therefore represent. € an analytic
function on the half-plane Rc(s) > |. We have Euler's identity

L) T T-4..
1 b= x()p-*

In view of the multiplicativity of X and since Ix(n)l,::: I. the proof is
literally the same as for the Riemann zeta function. Since. moreover, we will
have to give it again in a more general 1-,ituation in § 8 below (see (8.1)). we
may omit it here.

Like the Riemann zeta function, Dirichlet L-series also admit an analytic
continualion to the whole complex plane (with a pole at s = | in the case
X = X% and they @atisfy a functional equation which relates the arguments
to the argument | - s. Thi5 particularly important property doc€p in fact hold
in a larger class of L-serie€p. the Hecke L-scrics, the treatment of which
is an el-@ential goal of this chapter. In order to provide some preliminary
orientation, the proof of the functional equation will be given here in the
@pecial case of the ahove /,-sericl-, L(x,s). We recommend it for ciireful
©tudy, abo comparing it with the preceding €ection.

The proof again hinges on an integral representation of the function
L(x. s) which ha€ the effect of reali,dng it a€ the Mellin tramfonn of a
them €@cric€. We do. ho%zever, have to distingui-,h now betYzeen c1-cn and odd
Dirichlet character€ X mod m. This phenomenon will become increa€ingly
important when %e gcneralil:e further. We detine the exponent p E {O, I)
of X by

xi-N@ (-1)L'x(1).

x((m) :X(,,)(L)”l

711

Then the rule
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defines a multiplicative function on the semigroup of all ideals (n) which are

relatively prime to m. This function i:;. called a GriifJencharakter mod m. These

GrOjlencharaktere are capable of substantial generalization and will play the

leading part when wic consider higher algebraic number fields (see 97).
We now consider the gamma integral

o) = r@o+ép) f
o
Substituting y 1-+ nn?_v/m, we obtain
v B

m "¥ I
3 rxs)- = {”,y[w sim ysepr/2 X dy
n n

y
We multiply this by x(n), sum over all n EN, and get

| my St P, T2 »/m )2 d'_
) (-) T )L(x.s) = Z x(mn”e

) T ¥y

Here, @wapping the order of @ummation and integration i€ again jwitified,
because

«
f /.‘X(”)”[Y(‘77[/7:»‘/”!),(\'#»[7)/21 dy
w

m)(RdII+p)/2 (Re(@) P)
s r((Re(s) < oo.

The €cries under the integral(*),
x 25,
2y=3 xtmnle ™ ”"’~|
n=1
arises from the theta sericS
0(x,2) = X glmm? s
net

where we adopt the convention that 0° = 1 in case 11 = 0, p = 0. Indeed,
x(mnl" = x(-n)(-n)1" implic€ that

O(x.) = x(0) +2 l: XL cnZim
=1
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so that R(y) = {(O(x,iy) - x(0)) with x(O) = I, if x is the trivial
character I, and )((0) = 0 otherwise. When m = 1, this is Jacobi "s theta
function
o) l:em®
e

which i€ aswcialed with Riemann's .t:eta function as we o:,aw in *I. We view

the factor
L.(xs) = (0),n 1'(x,--)

in(*) as the "Euler factor" at the infinite prime. It joins with the Euler factors
L1.(s) = /(1 - x(p)p-") of the product representation (2.1) of L(x.-1) to
define the completed L-series of the character x:

Alx,8) = Loc(x.9L(%.5),  Re(s) > 1.

For this function(*) gives us the

(2.2) Proposition. The function A(x, N admit. € Ihc integr,-1./ represcnwtion

A(x,s) =€ f (O(Xiy) - XW))yl' i.i12m..,
2

where ¢(x) = (%)”/2,

Let us emphasize the fact that the rnmmation in the L -€-cries i€ only over
the natural numhers, whereas in the theta €pcries we sum over all integers.
This is why the factor np had to be included in order to link the L-€erics lo
the theta series.

We want to apply the Mellin principle to the above integral reprc..,cntation.
So we have to show that the theta series H(x, iy) o:,atisfies a transformation
formula a€y a@sumed in theorem (1.4). To do this, we use the following:

(2.3) Proposition. Let a, h, p be real numbers,p > 0. Then the €eric.-,
on(ah.z) = U.'H(Al+g)2:12frrh.r"

convclgcs ;1b.rnlutely ;.md uniformly in rile domain hn(z) 2: 8, forevery 8 > 0,
and for: E llil, one Ji.is the transformation fomw/a

Yula.b, — 1/z) = ¢ 2mivh Y=/

Bijul—=b,a.z2).
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This proposition will be proved in§ 3 in much greater generality (see (3.6)),
so we take it for granted here. The series 0i,(a,h,z) is locally unifonnly
convergent in the variables a, h. This will also he shown in § 3. Differentiating
p times (p =0, 1) in the variahle a, we obtain the function

+ mp(,,-mwg)zwzfmm

More precisely, we have

dr NPLrgP

—ar Oetah.2) = Qiy gl (. b.2)
and

dr b omia
o € Ty (—b.a,2) = Qi) e G (=b.a. ).

Applying the differentiation di'/ dal' to the transformation formula (2.3), we
get the

(2.4) Corollary. For a, h, fl € IR, 11 > 0, one ha.€ the transformation
formlifa

00(a.b, — 1/2) = [i? 7 “Pu] "2/ D)7 160, (—b.a,2)

Thi€ corollary give:-. u:-. the required transformation formula for the theta
series O(x.a), if we introduce the Gauss sums which are defined as follow5.

(2.5) Definition. For n E Z, the Gauss sum r(x,n) associated to the
Dirichlet character x mod m is defined to be the complex. number
|l .
T = X(V)(,zm\,n/m

frary

Forll = I, we write r(x) = r(x.I).

(2.6) Proposition. For a primitive Dirichlet character x mod m, one hw,

r(x,n) = X(nN)r(x) :md Ir(x)l = ,Im.
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Proof: The lirst identity in the ca5e (n,m) = 1 follows from X(1Jn) =
x(n)x(1J). When d = (n,m) -I=- |, both sides are zero. Indeed, since x
is primitive, we in this case choose an a =cc 1 mod m/d €uch that
a¥- | mod m and #- 1. Multiplying r(x,n) by x(a) and observing that
e2rrmw/m = gives x(a)r(x,n) = r(x,n), sothat r(x,n) = 0.
Further, we have

Ir()I12= OALCA = r(x) "f:1 ,X(v)e-2Jrlv/im ="f:1r(X, v)e-2Iriv/tll
v=0 v=0
o m- i r: L 1
3 x () ePFivilm g=2mivy x(uL  eziriv@i-am.

v=04=0 -0 1=0

The last sum equals m for t = 1. For p -I=- |, it vanishes becau<,c then
= ey /7 ican meth root of unity #- 1, hence a root of the polynomial

Z)i,u__—]l_ =Xfl1 X1,

Therefore Ir()I? =mx(l) = m. =

We now obtain the following result for the theta seriec; O(x, z) .

(2.7) Proposition. Jfx i€y a primitive Dirichlet character mod m. then we
have the transfonnation fonnula

()
irJm

where Xis the complex conjugate character to X, i.e., its inverse.

O, — 1/2) =

/PO o).

Proof: We split up the series 0(x, z) according lo the classes a mod m,

a= 0,1 ,m - |, and obtain
"
ox.z) = L x(n)nfiet- m = T_ x(a) +g)”o”(””~"2:/’“.
<=0
hence
m1
Nx,z) = L x@0ori@o.zzm).
<=0

By (2.4), one has





1
0.0, - Umz) = —(mz/ iy %(-)(’/m((m,mz)
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and this gives

1

migtmzrdniag
mb

Imianfm ,p golsim
pFTIanimyp grzim
et

o7
l,W(Oa mz) = gl e

Multiplying this by x(a), then summing over a, and observing that
r(x.11) = X(n)r(x), we find:

Hix, -1/cJ %‘m Onz/i)7* 2" El x(ayers11(0,0.m:)

= (mh/z)”*? Z( Z (@) Fianimyp printz/m
irm

1 2,

= 7;,,f(2/i)”*51(x)Eiw)n”f””‘ =
X
i ynm

G/ o). =}

The analytic continuation and functional equation for the function J\.(x. s)
now falls outimmediately. We may restrict oun,elve € to the ea<;e of a primitive
character mod m. For x is alway€ induced by a primitive character
X' mod f, where f i€ the conductor of X (see p.434), and we clearly have

L(x.) @ TT( - XIPP-IL(X,),
fim
fif
so that the analytic continuation and functional equation of J\.(x, \') follows
from the one for J\.(x', s). We may further exclude the case m = | (thb i€ not
really necessary, ju@t to make life easy). this being the case of the Riemann
zeta function which wa€p settled in § 1. The pole:, in thb case are different.

(2.8) Theorem. 1f X is a nontrivial primirive Dirichlet character. then the
completed L-series J\.(x.s) admit.€p an wwlytic continuation to the whole
complex plane C and sati8fie:,, the functional equation

Alx.$) = WO AKX, 1 —5)

with the factor W (x) = This factor /n:,, ab:,,0/utc value I.
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Proof: Let f(y) = “L29(x.iy) and g0) = “Lo(x.iy), c(x) = (%)M'l
We have x(0) = ¥(0) =0, so that

U(x,iy) =2 f x(n)nt ¢ n..2-im.
u=1

and therefore O(c n:ir,. and likewi<,c g(y)

By (2.2), one
Alx,s) = %/G(X'iy)y%ll dy
o

We therefore obtain A(x ..1) and similarly abo A(X,.,) as Mellin transforms
A(x.s) = L(f,s") and A(X,s) = L(g,s")

of the functions f(y) and g(y) at the points' = The tram.formation

formula (2.7) give"

I(-I):mo(x. - 1/iv)= (@T0q yi-f ocx.1_r)= FX) Y e(y)
v’ 2 . 2.t Jrii g

Theorem (1.4) therefore telb u€ that A(x ..'1) admits an analytic continuat10n
toall of C and that the equation

AQX,, )OLULT) @WOOLE P+ Y2-%2") oWl 1)
QOWMAG, I - )
hokh with W (x) = By (2.6), we have jW(x)l = I. a

The hehaviour of the special values at integer argumcnb of the Riemann
1cta function generalizes to the Dirichlet L-scric€ L(x,s) if we introduce, for
nontrivial primitive Dirichlet characters X mod m, the generalized Bernoulli
numbers Bix  defined hy the formula

m te" o 1A
FL(M= & x@ e | = ).)Bixk"
Thc:-e are algebraic numbers which lie in the field Q(x) generated by the
valucs of X. Since
m te(m-a)l
Fx(-t) = e x(-Dx(m-a) emr I x(-DFx(/).
11
we fin<l (-D{H1. x = x(-1)Bk.x, sothat
Bl.x =0 for J.""fop mod 2,
if pE /0. 1} i@ defined by x(-1) = (-I)"x(l).
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(2.9) Theorem. For any integer k ==: I, one has

L(x,1-k) = - B@X-

Proof: The proof is the same as for the Riemann zeta function (see (1.8)):
the meromorphic function

m ez * B
Fx(2)= ' x@uz. | = se18L1KI
ha€p pole5 at mostat z = 22y, v E Z. The claim therefore reduce€y to <;hawing

that

X. 1 -K) . "
0] - =residue of F.(2)z-- 'atz= 0.

Multiplying the equation

I'(s)_L_ =Jex, e-ntt,l.!_

n t
o

by x(n), and summing over all n, yields
@ I(S)L(x. €)= L GL.(Ot Ia

with the function

3) Gi(z) = nt x(n)e-nz = ati x(a)l @—.m: = F1(-z)z-"

From the equations (2) and (3) one deduces equation (I) in exactly the €ame
manner as in (1.8).

The theorem immediately gives that
L(%X,1-k)=0 for k¢.pmod2,

p E {01}, x(-1) = (-Dfix(l), provided that X i€ not the principal
character I. From the functional equation (2.8) and the fact that L(x, k) f=. 0,
we deduce fork 2:: | that

8
ldae @ Xt=-O for J..=cpmod2.





The functional equation also gives the
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(2.10) Corollary. Fork == pmod 2, k ::".:

, one has

L( W= (DIH{&-p}2€(9)1. BRX
X 2if m k!

For the values L(x,A) at positive integer arguments k ¢ p mod 2,
similar remarks apply a€y the ones we made in § 1 about the Riemann zeta
function at the points 2k. Up to unknown algebraic factors, these values are
certain "regulators” defined via canonical mapr, from higher K -groupr, into
Minkowski space. A detailed treatment of this deep result of the Russian
mathematician A.A. Biciun.ion can be found in fl 10].

Exercise |. Let Fi(tx) = The Bernoulli polynomials B, ,.(r)

ass€pociated to the Dirichlet character X arc by
F1(t,x) :1 < x(x)l’(’!-
Thu€ Rc,.(0) = Ri X. Show that
B =3 (98]

x(a)(a+x -m)' * k2" 0.
1y —1x(a)1/, k 2.0, one ha

Exercise 2. B, xfx)- B,1(x -m) =&AL,
Exercise 3. For the numbeVi S, xft')

S._1fvm) = k+|[(B,+1.1 (vm)- B.+11(0)J.

Exercise 4. For a primitive odd character X, one ha@

§3. Theta Series

Riemann's zeta function and Dirichlet's L-series are attached to the
field 1Q. They have analogues for any algebraic number field K, and the re€ults
obtained in § 1 and 2 extend to these generalizations in the same way, with the
same methods. In particular, the Mellin principle applies again, which
allows us to view the L-serie5 in question a5 integrals over theta 5eries.
But now higher dimensional theta series are required which live on a higher





dimensional analogue of the upper half-plane IH".. A priori they do not have
any relation with number fields and deserve to be introduced in complete
generality.
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The familiar objects C, IR, find their higher dimensional
analogues a€ follows. Let X be a i.e., a finite set with an
involution TR f (r EX), and let n = #X. ve consider the #7-aimensious |
C-algebra

of all tuples z = (zr )r'=x, z;, E with componenlwisc  addition and
multiplication. If: = (:,) E C, then the element Z E C is detincd to have
the following componenb:

We call the involution : r--+ Z the con_jugation on C. In addition, we have
the involutions : i+ :* and z1--1- €z given by

resp.  Ir

One clearly has: = The set
::[]‘[c]*:{zeqz:f}l

form€ an n-dimensional commutative IR-algebra, and C = R ®;-t

1f K is a number field of degree N and X = Hom(K. C), then R is the
Minkowski space KIR (€ K ®G I71.) which was introduced in chapter I, €5.
The number-theoretic applications will occur there. But for the moment we
leave all number-theoretic aspects aside.

For the additive, re€p. multiplicative, group <... ret-.p. CQ, we have the
homomorphism

Tr:C—> . Irg) =2 Ir, TESp.
T

V€ O NE@ =T

Here Tr(:), resp. N(":), denotes the trace, resp. the determinant, of the
endomorphism C-. C, -+ zx. Furthcnnorc we have on C the hcnnitian
scalar product

(xoy) =2 xeyr = 1rlxy).

It is invariant under conjugation, (x\) = (X..V). and restricting it yields
a scalar product (. ). i.e., a euclidean metric, on the R-vcctor €pace R.
If ZEC, then "? is the adjoint element with respectto (. ). i.e.,
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In R, we consider the @ubspace
Ri={reR|r=x" :[]‘[]R]*l
T

Thus we find for the component@ of x = (xT) E R1- that xr = xr E IR..
Ir 8 IR, wesimply write x > 8tosignify thatxt > Sfor all r. The
multiplicative group

R, ={xeRi|x >0} :[ﬂerl
Y-ill play a particularly important part. It com,i€ts of the tuples x = (xr)

of positive real numbers x, such that xr = .1., and it occurs in the two
homomorphbms

FERT—= R = o = (xD),
log : RY, — Ru, v = (x7) > log x = (logxr).
We finally define the upper half-space as€ociated to the G(CIIR)-set X by
H=R1 +iR:.
Putting Re(z) = ¥2<Z + Z), Im(::)= ﬁe: = Z), we may abo write

H@l' ec '€, Im()>0)
ifzlie in H, then so does -1/:, became zZ ER:, and Im(:)> 0 implies
Im(- 1/:) > 0,\ince zZ Im(-1/z) =- Im(::-'zZ) = Im(:) > O.

For two tuples z = (:ir), p = (p,) EC, the power
zI'=(:F)EC
is well-delincd by
2 — (,,y,m:rl
if we agree to take the principal branch of the logarithm and as@ume that
the zr move only in the plane cut along the negative real axis. The table
ms,iIC2R=H2IR. |Il:IR"—+nt; log: R: =
HS;C2R2Rt2 R, |I|l:RO-R, Ilog: RO -

shows the analogy of the notions introduced with the familiar one€y inthe ca€e
n = I. We recommend that the reader memorize them well, for they will be
used constantly in what follow€ without special cross-reference. This also
include€y the notation

Z0 T N (L) x> 8, 2]





446 Chapter VIL Zeta |-um.:tlon\ and L-@eric€

The functional equations we arc envisaging originate in a general formula
from functional analysis, the Puiswn summation formula. It will be proved
tIrst. A Schwartz function (or rapidly decreasing fum rion) on a euclidean
vector space Risby definition a C™;C-function f : R--+ which tends to
Lero as X --+ 0o. even if multiplied by an arbitrary power lixlim, m =:. 0,
and which shares this behaviour with all its derivatives. For every Schwartz
function f, one form:;. the Fourier transform

{y= f(x)e-23r,1<, ,-) dx,
R

where dx i€ the Haar measure on R associated to () which ascribe5
the volume | to the cube spanned by an orthonormal basis, i.e.. it is the
Haar measure which is selfdual with respect to (. ). The improper integral
converges ab@olutely and uniformly and gives again a Schwartz function
This i,; ea"ily proved by elementary analytical technique-,; we refer also
to 198]. chap. XIV. The prototype of a Schwartz function is the function

h(x) =

All functional equation.. we are going to prove depend, in the final analysis,
on the special property of this function of being its own Fourier transfonn:

(3.1) Proposition. (i) The function h(x) = e-n(.\,,) i._ its own Fourier
tran.._fom.

(ii) ff/ isan Lirbitrary Schwartz function and A is a linear tramfonmilion
ofR, then the funclion f,,(x) = /(Ax) has Fourier transform

! FeaTty

Fal = m/

where 'A is the adJoint transformation of A.

Proof: (i) We identify the euclidean vector space R with R" via “"ome
isometry. Then the Haar mea@pure turns into the Lebesgue meaf>urc
dx1 e dxn. Since h(x) = n ‘wehave h = n7=1(t nC), 0 wc
may assume 11 = 1. Differenti

ng

Ry = / h(x)f“""d\i
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in y under the integral, we find by partial integration that

= -2ni f xh(x)e-?.n,iyd, = -2nyh(y).

This implies that h(y) = Ce--n:*? for some constant C. Putting y = 0 yield@
C = |, since it is well-known IhalJ enx’dx = 1.

(ii) Sub@tituting ti—+ Axgives the Fourier transform of fA(x) as:

iy = f(Ax)e-2n:,(x,v)dx = f f(x)e-1,,-i1A-1x.v1ldetAl-1d_\

©-1-if(x)e-2,,-
fdetAl

11 €, dx=-I-f(1A-1y). O
IdetAl

From the proposition ensues the following result, which will be crucial
for the ,;,equel.

(3.2) Poisson Summation .Formula. Let I' be a complete fattice in R and
let

r @{o erl@ao)ez o alt er}
be the lattice dual to I'. Then for any Schwartz function f, one has:

grf(.u) wl(m Z Fleh,

where vol(I') is 1hc volume of n fundamental mesh of I

Proof: We identify a@ before R with the euclidean vector space !Rn via some
isometry. This turns the mearnre dx into the Lebesgue mem,ure dJ.. dxa
Let A be an invertible n x 11-matrix which map<, the lattice zn onto I'. Hence
I'=" AZ" and vol(l') = | det Al. The lattice zn i§ dual to itself, and we get

= A"Z-" where A*= 'A !

R'ET <= Yang ='n%g EZ forallnEz:
<===} "4.9'EZ"<===}¢'E".4. izn_

Substituting the equations

F=A7Z", = AZ",  falx) = f(Ax)] ?1(y)0 vol(t) f(A'y)
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into the identity we want to prove, gives

L Is(n) @ L f,(Nn).

nczZ"
In order to prove this. let us \\-rite f instead of fA and take the series

s & L fix +1.
keez"
It converges absolutely and locally uniformly. For :,ince f i€ a Schwartz
function. we have, if x varies in a compact domain,
Lix +K)I = lIkII"+ :sc
for almost all kK E zn. Hence g(x) is majorized by a con:-tant multiple of

the convergent €cries LkcicO -  This argumem work" just as well for all
partial derivatives off. Sog-(x) is a C"--function. It is clearly periodic,

g-(x+n)=gx forall nE?/,
and therefore admits a Fourier expansion
g = L a,c2m

whose Fourier coefficients arc given hy the well-known fonnula
1

1
in=[ -[ sicxernedxl all.

Swapping :,,ummation and integration give€

i ! 1 1
ap I / 2(x) e T g = > / . / For+ K)o~ 2T gy
"o @

@{(n).
It follows that

{(n) €900 & !_ a, € ged. m]

We apply the Poi&'>on summation formula to the functiom
{p(@h,xF N(x+ ar}rmlatrariizmti>1

with the parameters @,h E R and a tuple p = (Pr) of nonnegative integer€y.
wch that E{O, 1}if r =1 and p, PT =0 if r -I- f. Such an clement





pE TT, will henceforth be called admh,sible.
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(3.3) Proposition. The function f(x) = fp(a. h,.\) is a Sdiwart/ function
on R. Its Fourier transform is

Ty = [0 D] ™ fo—boa,y).

Proof: It isclear that fi,(a,h, t) is a Schwartz function, because

P GaNa

| Fota.b.x) = P(x)
for ome polynomial P(x).

Let p = 0. By (3.1), the function h(J.) = e :na.* equals its own Fouriel
Iransfonn and one has

FUO = fola,box) = il + x) 00
We therefore obtain

f(y)= ih(a+\)e2:rr,{h.,,e 2:r1,1.vidx

:I h(x)c-2rrr{r-h. ,-a) dx

= carrr{r-h.adjiy _ h)

p2milaby = ly=b.y—hl+2mily.(

= ¢ PP [ hay),

For an arbitrary admis1,ible p, we get the fonnula by differentiating p times
the identity

fo(a,h.y) = e mgani fo(-h.a,y)

in the variable a. No\\- the functions are neither analytic in the individual
componcnh or of a nor arc !hcl>c independent of each other, when there
exists a couple r -j. f. We therefore proceed as followl>. Let p vary over
the elements of X such that p = p, and let rr run through a @y@tem of
representatives of the conjugation classes {r,T) such that r -j. T. Since
pTPr = 0, we may choose a in such a way that Pa = 0. Then one has

(a+ ia +\-) = L<al, + \-p)2 + x5 ) az + 17 ]
c
We no\\- differentiate pp times both sides of(*) in the real variable ap, for
all p, and apply p(T time€ the differential operator

i il)
o= 2 i@o iilzk-
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forall a. Here we con€ider aii = @Fi+i/Ja as a function in the real variables
t,. 1Ja ("Wirtinger calcnjus"), On the left-hand side

f0(a, h. y)=

e-rrfa+1.a 1 1+2;ri(h, 1\ e-21ri(t, -\ OX.

may differentiate under the integral. Then, observing that pr, = 0 and
+ Xa)(@r + Xo0)) = (aa + ta), we obtain

f TI(-2n(ap +xp)} fp
P Q(—2rr(aa+ X")) P e-TCu+\a+-1)+2Jrl\h, )-21r1'1, r) dX

=N((-2:r) l'f} N((a+x)P)e ;ria+,11+11--21r1(h.1-)e-lirl (xv,dx

© N((-2nc)")];.(a,b.y).
The right-hand @ide of(*),
(,—2vi{(1. By =mi=bi v, -b+yi+2nilu. ¥ — (,err(u.fh+vw7r(*lv+v
in view of

(a, -h+y) =L , ap(-hp+Yp)+L, (arr(-hii+Ya)+ao(-ho +Yrm)},
')

and as p,r = 0, becomes accordingly
N ((@2rri)"}N( -h + y)") e-hita.h\fil(-h.a,y)
= N( (2:rri)") e-2rri:anifj,(-h,ay).

Hence =
Fola.h,y) =NG")e 2”’(""”j',,(—b,a~,\')-| [N

We now create our general theta scric€p on the upper half-.,pace
He {EC!'@,'. Im()>0} @ R, +iR&.

(3.4) Definition. For every complete lattice I' of R, we define the theta
series
Or(:x) = L, eirveis, 2z EH.
)SET
More generally, foru.h ER ,md any admissible p e TTrZ, wcpul
0j.(a,h,z)= L, N((@a+ /?)/1} trri(a+.d u+gl+2:rilh,is)
KicT
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(3.5) Proposition. The serie., 0j'.(a, h. z) convel:ges absolutely and uniformly
on every compact subset of R x R x H.

Proof: Let<) E IR,<) > 0. Forall z e H €uch that Jm(z) ?. 8, we find
‘N((a +g)p)(lrrr‘(u+u)1.ll+x')lzﬂl(lr.g,‘ < |N(((1 + Q)p)‘ TRty aty)
Let
fol@) = N{ta + g)?) e ™@i8418) (@ER. gE I).
1-<or K <; R compact, put |.f@IK = sup 1./€y(x)I. We have to show that
<eK
L I/gIK < oc.
1

Let ga.....gu be a Z-basis of I', and for g = L;'=imq, € I. tel
JLe=mrxim,|. Furthennore. define lIXll =<@>. 1T ligll?. 4@@KIIxIl.
then for all a EK:

(a+ g,a +g) 2: (llall- ligl)' 2: ligll?- 211all « IIRIl
[ |
2. ?.9 ¢ ;mé?.
2¢me
where . =Ei @€ L;'_‘:\ (9, 9ny.y1 is the @mallest eigenvalue of the matrix
1

(9.,9.))-

N((a+ Lm,g,)I") j5 a polynomial of degree q in them,, (q = Tr(p)).
the coefficients of which arc continuous functions of a. It follows that

g+

[NQa+g)")| = ud™' foralle e K,

provided p.x is sufficiently hig. One therefore finds a sub@ct r' <; I' with
finite complement such that

L f@IK :s 1 P()pg-+le-v @112,

gecr' =0
where 1) =#H{mE ' | max Im,| =p} =@ +1t - @u - H" The
1
©eries on the right is clearly convergent. D

From the Poisson summation formula .c now get the general
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(3.6) Theta Transformation Formula. One n.is
o/l (a,h, - 1/:) = [1T.Cp)l'2|TI(Uh)voI(I')r1N((z/i)"-!)erc-h.a,z).
Inparticufor, one has for the function Or(z) = 0Y,(0,0, ::):

Hr(-1j,) & ;Lul%.u Hr=(c).

Proof: Both sides of the transfonnation formula are holomorphic in :
by (3.5). Therefore it suffices to check the identity for z =iy, with y ER€.
Put 1 = y-12. @o that

=i and -I/:=itZ.

Ob@erving that t = t* =*1, sothat (@t. 11) = (€.*rr1) = (€, fr/), we obtain

Uiah, I =NE1)L N tartg)) cimiarietargy-zemi- Thig?
E/!

Leta= ta, f3=,-h. We consider the function
fi,(a/3.)= N((a+ 1)")crrxs.<vesvez. 1,

and put
orla, B.x) = fola. B.tx).
This gives
[0} 00 b. — 1/ = NG Y w,(a.ﬁ.gl
el

and :-imilarly z = i -/,S gives that
@ 0j,(-h,a.z) = N(f) 3" w,,i(-ﬁa,g’)l
el

Now apply the Poisson summation formula

1
3 - 4)|
©) 2 f@ ol(r

to the function
f(x) = ({Ir(a/3,x) = .t;,(a,fit-).

Its Fourier tran-;form is computed as follows. Let h(.1) = ,-), so that
/(r) = h(tx) = hy(x). The tram,formation A: x - Ix R @elf-adjoint
and has determinant N(f). Thu€ (3.1), (ii), gives

fy) = €h(t V).
N .
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The Fourier transfonn N ha€ been computed in (3.3). This yields
f(y) =[ NGINDe2rrigahyr /p(-/3.ft.t-ly)
=[N(iIYN(fehr'a,h,]-1,Pr 1(-/3,a,y).
Sub@tituting thi5 into (3) and multiplying by N(t-1') gives. by (1) and (2):
tif(a,h. -1/z) = [N(iPt2+ne2rl ))vol (173-103'. (-h,a2).

Since 1 = (:/i)"/z. ie., (@200 1= (z/i)P+%, this is indeed the transfor-
mation formula sought. o

For n =1, we obtain proposition (2.3), which at the time wa u5ed
without proof for proving the functional equation of the Dirichlet L-series
(and Riemann\ Leta function).

§4. The Higher-dimensional Gamma Function
The passage from theta serie€ to L-series in* | and §2 was afforded by

the gamma function
e
H
0

In order to generalize thi5 proce:,.;,., we now introduce a higher-dimensional
gamma function for every finite G(C IR)-,;et X, building upon the notation of
the la:,.t section. First we tix a Haar measure on the multiplicative group R€:

Let p = {-r.f} be the conjugation classes in X. We call p real or complex,
depending whether #p = | or #p = 2. We then have

R@ =TTR:p-
P
Where
R:, =R, resp. R, =[RExR]"={i»]yeRry)
We define i:,.omorphism:,.
R, —> k]
byy t—iy, ren.p.(y, y) yZ, and obtain an isomorphism

PR TTIRQ
P
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We now denote by 21/ the Haar measure on R';_ which corresponds to the
product mem,ure

n <it_

p t
where :lf- is the usual Haar measure on H€. The Haar measure thus defined
is called the canonical measure on R€. Under the logarithm
log: R* —5 Ry
it i5 mapped to the Haar measure dx on R+ which under the isomorphism
R =[[Rsy % [IE,
v v

Xp i+ Xy, resp. (Xp,\p) P 2xp, corresponds lo the Lebesgue measure
on nPJR.

(4.1) Definition. For s = <sr) E C 1,uch th,1t Re(sr) > 0, we define Ihc
gamma function associated to the G(CIR)-1,et X by

s d
I1X(s)= Nier 2

The integrand is well-defined, according to our conventions from p. 445,
and the convergence of the imcgral can be reduced to the case of the ordinary
gamma function as follow&.

(4.2) Proposition. Dccompol,ing the G(ClIR)-ser X into its conjugation
c/:.18ses p, one ha@

I'’X(S)=n1'p(Sp),
P

wheresp =s:  forp = {r}, resp.Sp= (@r.sr) forp= {r,r}, v f-f. The
factors are given explicitly by
T(sp), ifp real,
Tylsp) = , .
2110 P (Tr(s))| if p complex,

where Tr(sy) = s5; + 57.
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Proof: The first statement is clear in view of the product decomposition
"
(26. 4y) 0 (naf. n 01
P L

The second is relative to a G(CIR)-set X which has only one conjugation
class. If #X = 1, then trivially I'x(s) = I'(s). Solet X = {r, f}, r #-f
Mapping

ViR — R, (Vi) ]

one then gets

Jne yreer N(-<Ji., 71011 s« Df

© F&

=l ezmite

and, @ince d(V2)2/(/2)? = 2dt/t, the substitution ti-—--+ (f/2)2 yield@

J N(e-ys):! 1_ =2i-r,{sIr(Tr(s)) O
R+ J

The proposition shows that the gamma integral I'(s) converges for
s = (sr) with Re(sT) > 0, and admits an analytic continuation to all of C,
except for poles at points dictated in the obvious way by the ordinary gamma
function I'(s).

We cal | the function
Lx(s) = N(x ) Ik (s/2)

the L-function of the G(C IR)-set X. Decomposing X into the conjugation
classes p, yield€
Lx(s) € nL.(s)).
P
where as before we write sp = sT forp = {r} andsp = (s,.sr)forp= {r, f},
r #-f. The factor€ tp(sp) arc given explicitly, by (4.2), as
T (8/2), if p real,
Lp(sp) = e .
2(2m)" "2 (Tr(s,)/2),  if p complex.
For a single complex variable s E C, we put

I'x(s) = I'x(sl),
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where 1= (I . 1) is the unit element of C. Denoting ry, resp. rp, the
number of real, re€p. complex, conjugation classes of X, we find

X()= z<1-22)r2 I'(.9)"11'(2€)2
In lhe @ame way we put
Lx(s) = Lx(sl) = 3T-nw/II'x(s/2), n=#X,
and in particular
L11ds)=Lx(s)=n--'nrC1/2). if X={r},
Lds) = Lx(s) = 2(2n)_'.r(s), if X={rn,n, r 4T

Then we have, for an arbitrary G(CIIR)-€ct X:
Lx(€) = L:1.Cif'Lri(s)"c.
With this notation, (1.2) implies the

(4.3) Proposition. (i) L:.:() = |. Le(!)=Ya-
(i) L:il(s+ 2) = 5"L11,(s), Li;.(s +1)= 5°Lc(s).

(i) Lii(t - s)Lag, (1 +s) = Lp($)Le(l —s) =

sinms

(iv) LW;(s)LR:(s + 1) = L,c(s) (Legendre's duplication formula).

As a consequence we obtain the following functional equation for the
L-function Lx(s):

(4.4) Proposition. Lx(s) = A(.1)/,x(l -s) with the factor
A(s) = (cosns/2)*'+12(sinns/2)"2L: (s)'1.

Proof: On the one hand we have
LIFi(S) Lg(s)Lg(l +3)
Lit- D) Lg(l =o)L +5)
and on the other
Le()

Le(!-.,) Lc(l -s) (s)

=cosms/2 Lols)

L sinmsl -(v)2
5 sinmsliG

= co@ns/2 @inrrs/2 LI(s)?
The proposition therefore rc@ults from the identity Lx (s) = LIP(s)1 Lr, (s )2
n
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Thi€ conclude& the purely function-theoretic preparations. They will now
be applied to number theory.

§5. The Dedekind Zeta Function

The Riemann zeta function ((s) = LQ"P is associated with the field Q
of rational numbers. It generalizes in the following way to an arbitrary
number field K of degree 11 = [K: :Qi].

(5.1) Definition. The Dedekind zeta function of the number field K is
defined by the . @eries
1
§) = —_
Cils) Xu: Nay

where a varies over the integral ideals of K, and O't(a) denotes their :ibsolute

(5.2) Proposition. The series (K (€) converge abi,,olutely :.md uniformly in
the domain Re(.1:) @ | +8 for every 8 > 0, and one ha&

1
Tk (5) = I;[ e

where € nms through the prime ideals of K.

The proof proceeds in the same way as for the Riemann zeta l'unction
(sec (1.1)), hecau"e the absolute nonn O't(a) is multiplicative. We do not
go into it here, because it is the same argument that also applie€ to Hee/. ('
L-sai(:'s, which will be introduced in 98 as a common generalintion of
Dirichlet L-serie” and of the Dedekind zeta function.

Ju@! like the Riemunn zeta function, the Dedekind Leta function also
admit€y an analytic continuation to the complex plane with | removed, and
it satbfies a functional equation relating the argument s to | - s. This is
what we are now going to prove. The argument will turn out to he a higher
dimensional gencrali.t:ation of the one used in 91 for the Riemann zeta
function.
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First we split up the series (K(s), according to the classes .R of the usual
ideal clas€y group Cfk = J/P of K, into lhe partial zeta functions
|
‘l(a)y'

sothat

The functional equation isthen proved for the individual funclion:-. ((.R.,1). The
integral ideals in .R are described as follows. If aisa fractional ideal, then
the unit group  of o operates on the set a*= a" {O}, and we denote by a*
Jo* the set of orbib, i.e., the @et of cla€€pes of non-.t:ero agsociated clement:-
na.

(5.3) Lemma. Let a be an integral ideal of K and .R tile class of r/Je idea/
a-'. Tlen there is :1 bijection

a*Jo* _:_,.lb e Jll binlcgral), af—.b=aa-t

Proof: If a E a*. then aa-l = (a)a-! i> an integral ideal in .R, and if
aa-1 = ha-1, then (a)= (h), o that ah- E This shows the injectlvity
of the mapping. But it is surjective as \\-ell, since for every integral b E JI,
one has b = aa-* with a E ab€ a. [m]

To Ihe G(CHIR)-@et X = Hom(K, :C) corre<,ponds the Minkowski space
K, R [):r
The field K may be embedded into K11s+ Then one finds for a EK* that
‘((2)I€ INK1,c(a)l € IN(@)I,
where N denotes the norm on R€ (see chap. |. §5). The lemma therefore

yields the

(5.4) Proposition. ((J1.1) = Y1(a) !
INGiIr

By chap.L (5.2), the ideal a forms a complete lattice in R whose
fundamental mesh has volume

vol(a) = vri;.,
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where da = €¥(a)?1dK | denotes the absolute value of the dil>criminant of a,
and dK is the discriminant of K. To the series ((JI,s) we aSsot:iate the theta
series

0a,2) = a(/dV/"y = 3° iz (d)" a)

It is related to ((J1,s) via the gamma integral associated lo the G(CIIR)€set
= 1-lom(K,C),
K = Ixs) = I N7y 22
n
)

wheres E Re(s) > 0 (1,ee (4.1)). In the integral, we substitute
Yt mlal’yld@in

with | | denoting the map R* .. R@.(x,) i+ (Ixrl). We then ohtain
21
1dK I'n="1"K(s) Jﬁéahz

Summing thir,, over a full system 91. of representative€ of o+ /0*, yields

J
e-irr(ard” .a)N(y)' y,'
R.

ldx Iz "*m.s)r(ﬁ,z.w:/g(yw(y)"”f'
R )
with the 1,eries
aly) =

Swapping summation and integration i€ legal, for the same rca<.on a€y in the
case of the Riemann Leta function (seep.422). We view the function

Zox_(s) = IdKI-12n 1i2rK(s/2) = Ithl=2Lx(.1)

al> the “Euler factor at infinity" of the zeta function ((J1..1) (1,ee *4, p.455)
and define
Z@Qls) = Z™(1)({.Rs).

The desire to reali/e this function as an integral over the theta @eric€ 0(a. s) is
frustrated by the fact that in the theta seric.:;, we 1,um over all a E a, whereas
summation in the '-Cries g(y) is only over a s,yllem of repre@entalivc<, of
a*/o*. This difficulty - which was already hinted at in the cac of the
Riemann zeta function - will now be overcome in the general cal>c a€
follow1>.
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The image lo*| of the unit group under the mapping | | : R* -+ R@
is contained in the norm-one hypersurface

S={xeR}|Nw) =1}
Writing every y E R€ in the fonn

=1L, o e '] 100 t=NC D).
we obtain a direct decomposition
R: = SxIR.

Let d* x be the unique Haar measure on the multiplicative group S :.uch that
the canonical Haar mea:.ure dy/y on R€» become:. the product measure

1 =d*xx!:1.1
y t
We will not need any more explicit de€ycription of Ir.\.

We now choose a fundamental domain F for the action of the group
lo*I>= {IEFIt & 0*\ on Sa:. follow€y. The logarithm map

log: Ri---e-,. RE,  Ctr) 1 (logxr),

takes the norm-one hypersurface S to the trace-zero space H = {x E Rt |
Tr(t) = 0),and the group lo*l is taken to a complete lattice C in H
(Dirichlet's unit theorem). Choose F to be the preimage of an arbitrary
fundamental mc:.h of the lattice 2G. Any such choice :.atisfies the

(5.5) Proposition. Tile function Z(Jl, 2s) i. tile Mellin transform
Z(1,2.3 @ L0 .)
of 1he function
() = f'F@af) =, ! _/ﬁ(a.n-z‘r’”)d*x
)

where w = #11(K) denote € the number of root€ of unity in K.

Proof: Dccompo'>ing R".:_ = S x IR:, we find

Z012v1@ I e M dete
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with t' = (tjd")'1"_ The fundamental domain F cuts up the nonn-onc
hyperwrfacc S into the disjoint union
S= ry2F.

The transformation x i+ ry2r of S leaves the Haar measure d*x invariant and
maps F to r?F, so that

Z o laxt '“‘d‘x:i Z (,7yr(mr'.md*",

| dem deR
s f P
= M_ L L ¢eruuratoex

w ccosac:1l

©_|_i@;n1m- 1) Jx ¢ f(1)- I(oc).
U

F
Observe here that we have to divide by 111 = #1I(K), bccau@pe /L(K) is just

the kernel of -+ 1t1*] (sec chap.l. (7.1)). hence Litl = 3/4L'°- Obé@erve
furthcnnore that at: runs through the :ct a+ = a" {O) exactly once, and
finally that /(oc) = €. € d*x, as A(a.ix::;,0) = I. This rc@ult doe indeed
show that

Z(K2.,)€ j(i(t)-f(oc))r¥-@L({.,). n

"

Using this proposition, the functional equation for the function Z (JI. s)
follows via the Mellin principle from a corresponding transformation formula
for the function f",:(a. t), which in turn derive€ from the general theta
transfonnation fonnula (3.6). In order to find the prcci<,c equation, we have
to compute the volume vol(F) of the fundamental domain P with re€pect
to d* \. and the lattice which is dual to a in R. This i€ achieved by the
following two lemmas.

(5.6) Lemma. The tlindamental domain F of S has the fol/owing volume
with respect to da* \

vol(F) =2"""'R,
where r i.. the number of infinite place,; and R is 'he regulator of K (see
chap. I, (7.5)).
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Proof: The canonical measure dy/y on R€ is transformed into the product
measure d*x x dt/I hy the isomorphism

a:SXR@----- +R:, (i +xtl1i

Since I= /t £ IR: 11 :St :Se) has measure | with respect to dt/t, the
quantity vol(F) is also the volume of F x | with respect to d*., x dt/t,
i.e., the volume of a(F x /) with respect to dy/y. The compoitc ifr of the
isomorphbms

ROO® RiL® TTR=R
PE
(see S4, p.454) transforms dy /y into the Lebesgue measure of IFL.!

vol(F) € volg, (v,a(F x 1))

Let w, compute the image ifra(F x 1). Let 1 =(I. .... DEST. hen we find

ifra((1,t)) = clogtlln = @elogt
with the vector e = (ep. - .ep) E !'Rr, ep = I, re-p. = 2, depending
1 .
whether p, is real or complex. By definition of F, we also have
val(F x (1}) =20]
where <P denote:. a fundamental mesh of the unit lallice G in trace-tern space
J= {(x) e IR | LX, =0). Thb gives
vaF x e 2<P +[0. @] c.

the parallelepiped €ppanned hy the vectors ze1..... 2c, 1 lc if C .C 1
span the fundamental mesh <P. Its volume is t211 times the absolute value

of the determinant
. L
e lmy @)

il c-l,  <p

Adding the first r - | lines to the last one, all entries of the last line become
zero, except the last one. which is 11 = Lep‘, The matrix above these
zeroes has the absolute value of its determinant by definition equal to the
regulalOr R. Thus we get

vol(F) = 2*-IR. O
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(5.7) Lemma. The lattice 1" in R which is dual to Ihe lattice I' = a is

given by
T = (a0

where the aMerisk denotes the involution (xT) r-—+ (* T) on KR 1:md () the
different of KI1Q.

Proof: As (x._v) = fr(@ly). we have
T ~laerl (N.a) £ Z foeallaE a} ~ IX e Rl Ty ciiZ |

Tr(xa) £ Z implies immediately x € K, for if ay \an if, a Z-baf,if, of aand
X = xial+--.+Xnln, with x, ER., then Tr(xa1) = L, X1 EZ
i,; a system of linear equations with coefficient@ Tr(a,a;) = EQ.
soall x, € QI, and thut. x e K. 11 follows Ihat

v ~{xexlnxaycizl.

By dclinition we have -1 = {x e K | £ Z}, and we obtain the
equivalences x E@ I" €  TrKl,(J(xao) £ forallae a® xa £ ()-!
©XEuO))-1. . n

(5.8) Proposition. The functions fF(a,t) satisfy the transfonmition formula

260 100010,

fF(a.}p=t
and one ha\

-1
Fe(a,0) = - R+ O™y fixt——+ 00,1.> 0.

Proof: We make Uf,e of fonnula (3.6)

o (z)

r(=1/2) =

ri=1/z2) ol
for the lattice I' in R, whose fundamental mesh ha,; volume
vol(I = 11(a)ld« The lattice I" dual to I it by (5.7)
= (aD) * compatibility ();z.*g) = implies that

0O,r(z). Furthermore we have
d(aidd-1 = 131(a)-21J1(D) 2ld« 1= 1/(131(a)2ld« Il = 1/da.

The trant.fonnation r r—+ x- ! of the multiplicative group S fixes the Haar





measure d*x (in !he same way as x r—+ -r  fixes a Haar measure on JR.n)
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and maps the fundamental domain F onto the fundamental domain p-*,
whose image log(p-Y) is again a fundamental mesh of the lattice 2 log lo* I.
Observing that N(x(tda)!i") = tda for x ES, we obtain

o,

fria 0)&-4_ TO,(;,;':/fdz) d'x

e,(-w,":/td:),r.,

P
N (fd)l/2|
= W@ O(awl(xetr.,
1

Sll2 I e@wl(.i1Jd@o:1d"

= t/2fi' -1((ail)-1,1)
This 5hows the first formula. To prove the @ecoml. we write
F@v="" i< a@id” )-ndex=Y- M.
F <

1
[he function r(/) sausties 7@ = O(e-"" ™ ¢ > 0, t . ex;, 2@ the
summand f 6(a,ix¢'/*) - 1 are of the form

Y ,
TR AN g ea a#0, 1 = f/dzrl

The point x = (x,) varic€ in the compact clo€ure F.; [nr IR:]- of F.
Hence xr 2:0 > 0 for all r, ie.,

ava) = L wi*, 2:0@a)
and so
r(® ' Yo @IJF) (Oausvf)- ).

Writing m = min{(a,a) l a Ea.a-1- 0\ and M = #\a Eal (a.a)= m),ii
follows that

Oa(isVr) =1 = + L .‘r&\m,u)—m)\‘/ﬂ) — 00

where (= Jr8m/dl/n We thus get a:,, claimed





/Fa, D= YU(EY+ O(c_11"=) € R+ O(c-111").
U w
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This last propu;,ition now enables u™> to apply the Mellin principle (1.4) to
the functions ft. (a,t). For the partial ?eta function::,

this yields the following result, where the notation;, dK, R, U',and r r,ignify
as before the di€ycriminant, the regulator, the number of roots of unity. and
the number of infinilc places, respectively.

(5.9) Theorem. The function

Z(R.1) = Z,.(S)(RS). Re(l)> 1,

Los) = |dg PP*r ™Ik (/2] admils m1 analytic continuation to
[0, 1} and satisfies the functional equation

Z(3t1)=ZzUl' I-s),

where the idc1.1/ ¢/:18ses Rand Jf corrcr,pond to each other via .RI{' = [i)l. It
has -,imple polesut 1= 0 and 1= | with residues

Proof: Let .f(t) = /.(a t and g(t) = .fr-2((ai)) *1). Then (:'i.8) implies
t(}) =0

and 11 1
f® =aot o(C- "\ gt =au+O(c " ).

N EON . . . .
witha, = U€ R. Proposition (1.4) thus cn;,ures the analytic continuation of
the Mellin tran;,forms off and g, and the functional equation

L(.) @LEe. & - )

with simple pole;, of L(.f.s) at1 = 0 and@= I with re€idues -an, rcsp. ao

Therefore ¢
s
ZRs)=L{[f.=
s (l z) |
admit€p an analytic continuation to  '-- {O. I} with simple pole;, at s = 0 and
s = 1 and residues

2 21
-2a0 = -;-R, re;p. 2a0 = ;-R
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and :, ati@fies the functional equation

=i ) e

This theorem about the partial Leta functions immediately implies an
analogow, result for the completed zeta function of the number field K,

ZK(s) =

_(9)(K(s) = LZ@t,1).
]

(5.10) Corollary. The completed zeta function ZA (5) 1:1dmib an analytic
continuation to C "- {0, 1) and satisfies the functional eqwition

Zx(sy=Zg(l—3).

It has simple poles at., =0 and .1 = | with residues
2hR 2"hR
s resp. :
w

where h is the c/w,s number of K.

The last result can be immediately generalized as follows. For every
character

of the ideal cla:,,s group, one may form the zeta function
Z(%.8) = Zoo ()G (X 81,

where
x(a)

li(@)
and x(a) denotes the value x(R} of the class f-t = lo] of an ideal a. Then
dearly

Z(x..,) €1 : x(JNZ(.<L,).
1
and in view of .fff = R *10], we obtain from (5.9) Ihc functional equation
Z(x ..,) & x(O)Z(x.1 - .,).
If x #- 1, then Z(x, ) is ho\omorphic on all of:['._ a:-, :[;11x(m = 0.
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We now conclude with the original Dedekind zeta function

(K(sS)=L€». Rc(s) > 1
a @1t

The Euler factor at infinity, Zc,o(s), i€ given explicitly by §4 a€
2-.08) = 1dKIM2Lx() = 1dkiPL2Lii(sylLecaf2.

where 1y, resp. r2, denotes the number of real, resp. complex, place€. By
(4.3), (i), one has L,_,(I) = IdK 132 /nr2. As

(K(8) = Zx,(1)-1ZK(s) = 1dK 1-s/2Lx(s) 'ZK(S),
we obtain from (4.4) the
(5.11) Corollary. (i) The Dedekind zc/1:l function (K(.1:) has an analytic
continuation to C - 11}
(ii) Ats= | it has asimple pole with residue
2n(2ny"

<= =
Here h denote. € the class number and
R=log
the genus of 111e number field K (see chap. 11, (35)).

It s,iti. @fks the functional equation

k(1 —5) = A@)¢x (s)

with the factor
_ TSN s
AS) =ik |* z(cos 7> (sln 7) Leis)".

The proof of the analytic continuation and functional equation of the
Dedekind zeta function was first given by the mathematician ERtC/1 Hickt
(1887-1947). along the <;ame general lines we have pre€ented here, albeit in a
somewhat different fonnulation. Further, the theory we are about to develop
in the following section"§ §6-8 also substantially goe€ back to Hr.cke

The formul.i for the residue

202y

Shemt G (0) = R R
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is commonly known as the analytic class number formula. It doel, allow
us to delcnnine the class number h of the field K, provided we know the
law for the decompo€ition of primes in this field sufficiently well to lay our
hands on the Euler product and thul, compute the .t:eta function.

The following Hpplication of corollary (5.11) to Dirichlet L-series L(x, s)
(see *2) i€ highly remarkable, It results from studying the Dedekind zeta
function (K (s) for the licld K = Q(,,,,) of m-th roob of unity. and i€ based
on the

(5.12) Proposition. ff K =Q(um) is the held ofm-t/1 roofs of unity, then
() @ &) Nix.),
X

where x varie.€ over all Dirichlet diarnclcrl, mod m. and

G(.)€ n(-".I(p)-'3-".

Pim

Proof: The proof hingel, on the law of decomposition of prime numbers p in
the field K. Let p = (p;.. .p,f be the decomposition of the prime number
pin K, andlet f be the degree of the p;, i.e,, \Jt(py =pl. Then (K(s)
contaim the factor
n@-.rp) )_, €1-p ,,>-"
PI
On the other hand, the L-series give the factor NX<<I- x(p)p_'»)-*. For plm
thi5 is 1. So let pf m. By chap. I, (10.3). f' i5 the order of p mod m in
andc = I.Since efr = tp(m), the quotient r = is the
of the subgroup Gr> generated by p in G = Al,1,0ciating
X 11 X (p) defines an i:-.omorphism G o 11f, and gives the exacl 1,cquence

where€p indicatel, character group.s,. We therefore find r = #(G/G1,) = (G :
Gp) clementl, in the preimage of x(p). It follow€ that

n(I = x@Ep-D-1=Na- @ =a- 1 L)
X

(11

©no-"I'(p) =1-.
PIN

Finally. taking the product over all p, we get (K(s) = G(s) TTX L(x.s). O
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For the trivial character x° mod m. we have L(x°s) = n, ynr(l - p )
((s). sothat

\K(,) €G(.) ITO - p-'m,) TT L(x. D-
pim

Since ((s) and (k (s) both have a simple pole at s = I, we obtain the

(5.13) Proposition. For every non-trivial Dirichlet ch:.1racler x, one ha¢

This innocuous looking result is in fact rather profound. and yield€ as a
concrete con€equencc
(5.14) Dirichlet's Prime Number Theorem. Every arithmetic progression
a, atm, ax2m. a+3m, ..., with(a.m)= 1.

i.e., evely classa mod m. conwim infinitely many prime number. €.

Proof: Let X he a Dirichlet character mod m. Then one has, for Re(s) > I,

logL(x.s) = - Llog(l xpyp-) =L1I: L A +oy (D).
P mol mpt

where gx (s) is holomorphic for Re(s) > % - this follows from a trivial

estimate. Multiplying by x(a-") and summing over all character€ mod m. yields

L x(a-YlogL(x.n» =LL x(a-.ip) + g(s)

X v p
v |
@l:1:x(u-"h) I: -+s<<I
h=l x p=(111) P-"
I: ﬂlﬁ']ﬂ((.g).
n=ciey A

Nole here that

| x(u 'h) Ol if a#- h,
pm) = #ZImZ)@. it a= h

When we pas€ to the limit s —+ | (1 real > I). logL(x,.1) €lays





bounded for X #- X° because L(x, 1) #- 0, whereas logL(x°.1) =
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Lpim log(] - p--l) + log((5) tends to :xi because ((j) has a pole. The
left-hand side of the above equation therefore tends to oo, and 5ince i:;(j) is

holomorphic al s = I, we find
am L i) =xs
1 p=agny A
Thut-. the sum cannot con-.ist of only finitely many tem1s, and the theorem is
proved.

For a =1, Dirichlet's prime number theorem may be proved by pure
algebra (see chap. L § 10, exerciSe ). Searching for a proof in the general
case Dirichlet was led to the study of the L-series L(x,s). This analytic
method gives sharper ret-.ults on the distribution of prime numbers among
the classes a mod m. We will come back to this in a more general context
in§ 13.

§6. Hecke Characters

Let m be an integral ideal of the number tield K. and let Jm be the group
of all ideals of K which are relatively prime to m. Given any character

x:am+s' @{, ecl1,1¢ 1},
we may at-.t-.ociate to it, as a common generalization of the Dirichlet L-serie€
as well at-. the Dedekind zeta function, the L-t-.cries

Lix ...) @] €©-
o 'li(n)'
Here ovaries overall integral ideal€ of K, and one delincs x(0) = 0 whenever
(0.m) == I. Searching for the most comprehensive clast-. of character€ X for

which the corret-.ponding L-series could be 5hown to have a functional
equation, HtCKF was led to the notion of GriHkncharakterc. which we
define as follows.

(6.1) Definition. A Grtinencharakter mod m is acharacter x : .rm --+ 5t
far which there exists a pair of characters
xi:(o/mr __. 5% e R* __.sh

.guch that
x((2)) € x.(@h(2)
for every :Jlgcbmic integer a £ o relatively prime 10 m.
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A character x of .1m i€ a GriJjJem harakter mod mas 5oon as there exi:
a character X-x., of R* :c.uch that

x((@) = xool@)

for all a € o such that a — | mod m. For if thi€ is the case. then the rule
Xy(@) = x((a))x-x,(a) * define5 a character xr of (o/mr which sati5tle&

X((al) € Xr(a)h(a)
for all algebraic integers a £ n relatively prime to m. This last identity underlines
the fact that the restriction of a Gridienr-haraktcr to principal ideal5 breaks
up into a finite and an infinite part. From
omi ={a Eo l@ m)=I).
it extend& uniquely to the group
Km & fa EK | @me I}
of all fractions relatively prime to m, hecau<se every a E k{ml determines

a well-defined class in (o/m)*. The character and thus also the

character xi, are determined uniquely by the G,i!Berlch,mlta x, since
the group

wkm=/aE km la= 1 mod m)
is dense in R, hy the approximation theorem, and one has Xc-x,(@) = x((a))
fora E Km. Let us recall that the congruence a =1 mod m signilie€ that
a = h/(, for two integers h, ¢ relatively prime tom, such that h = ¢ mod m
or, equivalently, a E utf'l t;; kp for Pim, if m = TIP p"P.
The character x™>,) factors automatically through R* /o™, where

om=/£ E IF= 1 mod m)

In fact, for ¥ E 0" we have xde) = 1, and thus
x((F)) = 1. The two character€ Xt and Xoo (o/m)*,
as€pociated with a GriHJencharakter X &atisfy the relation

Xr(fxex,(£) = | for all e E

and it can he shown that every "uch pair of characters (xr- X~) comes from
a Grfdlenchara/..ter x (exercise 5).

The attempt to understand 1,n>/in1< hrrmA/m in a conceptual way leads
one to introduce ideles. In fact, Griif.iencharaktere arise as characters of
the idele class group of the number field K. We will not use this more
abstract interpretation in what follows, but it will be explained at the end of
this section.





472 Chapter VIL Zet,, Function€ and /,-\enes

(6.2) Proposition. Let x be a Gr6Jiencharokter mod m, and let m' be a
divisor ofrn. Then the following conditions are equivalent.

(i) x i the restriction of a Griij3cncharoktcr x :.Im'----+ S' mod m'.

(i) Xt factors through (o/m'.

Proof: (i) => (ii). Let be the restriction of the ————
X' .Am -+ and let x4 be the pair of character€ wilh X'
Let Xt, rc@p.  be the compo@ite of

(0/m)e--——+ (0/M')*@ st re@p. R /o™ — R o™ 22, )

We then find for a € 0™ € o™
x{(@) = x' (@) = xi@xo(@) = F@Fola),

so that Xi = Xrand X,.,_ = ;(c™ because Xt and Xxo are uniquely determined
by X: Thus Xt !'actors through (o/m')€ (and x=s through R+/0™"\

(ii)==} (i). Let Xt be the composite of (o/rm)* ... (o/m)€ __li 51. In every

das€ a' mod pm' E 1m';pm’, there is an ideal a E ] which j1, relatively
prime tom. i.e., a= aa for some (a) E pm'. We put

X'(@) = @ xj@xnta) |

Thi€ definition doc€ not depend on the choice of the ideal a E Jm. for if
a'= alay.a; EJ", (1) E pn', then one has (aaJl) £ Jm,and

x(@xi(a)xo-(a) = x @x (@) xr(a tadx™ (atax@X"(@)
X(adxi'(al )x,-,_,(ai).

The restriction of the character x' from 1m' to 1m i€ the Gr6Jk11lcharakter
of J* and if (a') is a principal ideal prime tom' and a'= ah, (a) E
(h) E pm', then we have

X((aJ) €@ X((@J) x'((h)) & x((a)) x,'(hIh(hd
= xr(a)xc,.,(a)x;(h)x,.,_,(h) = xi'(ah)X--x.,(ah) = x;@Jxe,.,(@).

Thus x' is a Grij.fienc lwraktcr mod m' with corre€ponding pair of characters

on L

The Gréfiencharakter X mod m is called pl'imitive if it is not lhc





a Grfdiencharaktcr x' mod m' for any proper divisor m'Im.
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According to (fi.2). thb b the case if and only if the character Xt of (o/m)*
is primitive in the l,ern,e that itdoes not factoriLe through for any
proper divisor m'Im. The conductor of is the smallest fofm
@uch that x b the restriction of a ChiWoclum/te- mod f. By (6.2), f
i5 the conductor of XI. i.e.. the Smallest divisor of m such that X factors
through (o/f)*.

Let us now have a closer look at the character X, and then at the
character Xrx,-

(6.3) Definition. Let x; be a character of (o/m)* and y £ m-'D-!, where()
i1, /he different of K 1Q. 111cn we define the Gauss sum of x; fo be

22 Trixy)

xr(x)e”
where x varies over a system of rcprcsenlalives of (o/m)~.

The Gaups sum doel, not depend on the choice of representatives r, for if
X' =x mod m, then - )y Emm-'D-! = D-! = {a EK | Tr(a) E 2),
so that
Tr(x'y) =Tr(ty) mod Z

and therefore c2rrir(y) = c2rr, i,(JI. The same argument shows that
rm(xy,y) depends only on the cosct y + II-1, i.e.. it defines a function
on the CJ/m-module m 'D */D-" Inthe case K = Q, m = (m). 'we get back
the Gausl, sum introduced in (2.5) by r(x1.11) =

define theta series and L-serie’> attached to Hecke-€ Gn',Pe,,ch,mnltm with
a view to proving functional equations. For this, the propertie-" of
Gaul,1, sums will play a crucial rOle.

(6.4) Theorem. Let x; be a primitive character of (o/m)*, Jc1y E m-'z, *
and a E o. Then one ha,,

@) Tmlxr y).  i((@m) =1,

Tl a) = if(a.m) # 1.

and furthermore

Tmlxe )| = VI(m), if (ymd.m) = 1
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The most diffcull part of the theorem is the last claim. To prove it, we
make the following preparations. For integral ideals a= p:-* - 1", vl L
consider the MObius function

ifr=0,ie.,a= (),

1
L)z (-pT, ifuil= =tJ,=3J,
3 otherwi5e.

For this function we have the

(6.5) Proposition. Jf a#- I, then L /.L(b) = 0.

Proof: Ifa= p\". .p:*

I, then

1:p()@L(+1:1,(p)+ L .@..p.)+ =+, .. p)
© | +GHI+ GOOHI"+ -+ () (-1)
©(1+(-1))'90 17

Now, for _y e m -!and for every integral divisor o of m. we look at
the sums

To(Y) © e2ntTrly) and  S(Y=) L e2,rr Td, V).

. mol m
-1

These sum€y do not depend on the choice of representatives x, for if
x' =\'mod m, then (x' -x)y e D-1, hence Tr(x'y) =Tr(xy) mod Z. We
find the

(6.6) Lemma. One has
T. ()@ L umsorm),
aint
and for every divisor aim,

D) ify Ea 1i)-1,

Sal¥) =
ol 0, ify <f.u-10-1.
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Proof: In view of (6.5), we have

Lo I_Eel Tyl

o= W -
bim ab

ulbim

Ifye u-Yp-and al_\. then xy & i)-1, sothat Tr(xy) € Z, i.e., all summands
of Su are | and there are #(a/m) = 1)1(@) of them. If on the other hand
y ¢ u-ti:l-, then we can find in a/ma class z mod m such that zy f_ i)-1,
i.e., Tr(zy) ¢ z, sothat e?r,-i,(:l #- 1, and we obtain

Camritriapsa=) L carercaen= sam),
rmoJm
:-ince \ + z varies over all the classes of a/m a:,, X does, so that we do find
S.(v) ©0. [m]

Proof of Theorem (6.4): Leta Eo, (a, m) = I. Asx rum, through a system
ofrepre:, entatives of (v/m)€, so does xa. We get

Tmxray) = T xelx) e )|

=n@ % xtaee]

= X@ 3|
Let (. m) = my #- I. Since xr is primitive, can find a class

h mod m E (o/m)* such that

xr(h) #- 1 and = | mod--

A:,, a consequence. ah= a mod m. so that ahy - ay E Zl * and by what %e
have ju:,t :,,hown,
Te(b)tm(xe ay) = Tmlxr. bay) = Tl ax) |

Finally. in view of Xdh) -1- I, we lind ru(x.ay) = 0.





As for the absolute value of the Gauss sum, we >cc from (6.6) that
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I, (XF,1)1% = Tm(xt Wrmea-n
Y A Tm(xLy)XI(He-2rr! sy

mod m
vm)=1
i)
> tmlxnane
mod m
x,mi=1
— {2y T TE=)

od mx mod m
=1 (r,m)=1

Y oadTi{yE - 1)

mod m

> xOl p@syc-
B an

We now make me of the condition (ymi'l, m) = I. It implies that

ve-nDEa ID-Y=innzea—imode
o

Indeed, if: - 1 & 1.c'm, then - I)E m-Yi-ta-'m = a-ti:a-L If on the
other hand : ¢. | mod @, i.e., 1(¢ - 1). thenvu(z- 1) < for a
prime sor pof €. Since =1, we have vp(.rrmV) =  so that
VH(Y) = -vi(m) - I'u(D) and

rpec - D)< V(mM)- V@) + cuey = -VH(A)- vy = Vp(a-1 &,
and thu@ y(:: - 1) ,t_a-'D-* Thit-, together with (6.6). gives
Irm(X1,y)?= LIL(a)€(€)
aim 00:.I

For al- | the last character sum vanishes since is primitive. and therefore

nonzero on the subgroup of:: mod rn E such that:: == | mod rn/a:
the sum reproduces itself under mulltiplication with a value xr(x) # | of the
character. So we finally have that =91(m). This prove€ all the
@tatemcents of the theorem. D
Having studied the character'> x1 we now tum to the character€

x"-"" of R*. They arc given explicitly a@





(6.7) Proposition. The characters A of R*, i.e., the continuou€ homomor-
phisms
i R*+ 51
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are given explicitly by
A(&) = N(xP|x]7Pe),

for some admi.,sih/c p E TTr Z (see §3, p.448) and aq ER+. p and q arc
uniquely detennined by A.

Proof: For every x E R+ we may write x = and obtain in this way
a decomposition

* = U X R@._,

where U = {r E Rl I = 1). It therefore suffices to determine separately
the characters of U and those of R€. We write p instead of r for elements of
Hom(K, ) to indicate that r = f. and we choo@e an element u from each
pair {r, f} @uchthat r CD T. Then we have

u@[NsT @TTixl IXN[s' « st.

and Sl—+ [S! x S!+, ur i+ (r<)..ta), i@ a topological i€@omorphism. The
characters of {+ I} corrc€pond one-to-one to exponentiating by a Pp € {0, 1},
and the character!-. of S' corrc<,pond one-to-one to the mappings i+ X €,
fork E Z. f--<"rom the correspondence k i+ (k. 0), rc@p. (0, - k), for I.2:0,
resp. k _s 0, we obtain the character5 of [S x S'j@ in a one-to-one way from
the pairs (fh, Pr) with Pr, Pr 2: 0 and Pr Pr = 0. The characters of LT are
therefore given by
Ax) = NPy
with a uniquely detennincd admissible p E TT,
The character!-. of R".., arc obtained via the topological isomorphi€m

log: R@-—--+ R+.

Writing al-. above
R, =[]k x ]_[[]RX]R]Jr,
o o
and observing the isomorphism [ H x r:3* « R., (Xg, Irr) i+ 2XIT, We Sec
that a character of R+ corresponds one-to-one to a system (qp,t/o) via the
rule

TTedi"TT e21g"1"

It is therefore given by an clement q E R= viu The
bomorphisrn log then gives a character A of r-. via y i+
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with a uniquely determined g E R+. In view of the decomposition
we finally obtain the characters A of R*as

() = N(( d )p\x|“’) = N{(xPlx| PH). O

1x]

If the character Xcx. associated to the Griljiencharakter x : ,Im -+ St is
given by .
(o) = N (xP1x|77+)
then we say that X is of type (p, ), and we call p - iq the exponent

of X. Since Xoo factor& through R€/om, notall exponents aclUally occur (<see
exercise 3).

The class of all Gri/Jent haraktcre subsumes in particular the generalized
Dirichlet characters defined as follows. To the module

me N pe
Pl&
we associate the ray class group ./°// pm mod m (see chap. VI, *I). Here

Jm is the group of all ideals relatively prime to m, and pm is the group of
fractional principal ideals (a) such that

a= 1 mod m and a totally positive.
Thi5 last condition means that ra > 0 for every real embedding r : K - 1l

(6.8) Definition. A Dirichlet character mod mis a charnclcr
X :Jmjpm-> S|

of the ray clas€ group mod m, i.e, a character x : J" > S' such thar
x(P™) = 1.

The conductor of a Dirichlet character X mod m is defined to be the
smalle@t module f dividing m such that X factor€ through Jf/pf_

(6.9) Proposition. The Dirichlet characten; X mod m are preci€cly the
Gri;j,emharaktere mod m of type (p.0), p = (pr), such tliat Pr= 0 for all
complex r. In other words, one has

x@) = x1@ng 1,7}

for some charnctcr xi of (o/mt. The conductor oft/Je Dirichlet character is
,it the same time aho the conductor of tile corresponding GriHiencharakter.
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Proof: Let be a Griijjcncharakter mod m with corresponding characters

Xt, Xr-o0of R@/om, such that X,.,_, is of type (p, 0) with Pr =0 for r
complex. For totally positivea E o such thata — I mod m. we then obviously
have xr(a) = 1, and X:x,(@) = I, and then x((a)) = XL(a)x,(a) = I.

Therefore X factori7es through .rmJp+n, and i€ thus a Dirichlet character
modm.

Conver@ely, let X bea Dirichlet character mod m, i.e., a character of 1m
suchthat x(Pm) = 1. Let Km= {a € K*la = 1 mod m), K€ = /a € Kmla
totally positive} and R;+l = \Ctr) ER* I x> 0 for r real}. Then we have
an isomorphism

Km/K @'--—-,. R*R@+i € N {+13.
preal
Then the compo,;ite
K™/KD O, ™) pr Y
¥ .

defines a character of R*/R( i Itis induced by a character x-«_, of R* which -
because x,x,(R(+i> = | - is of the form K.-..,(x) = N((fh)I') with p = (pr).
Pr E /0, 1) for r real, and Pr= 0 for r complex. We have x((a)) = x.x,(a)
fora £ Km,and

xeay = x ((@)) xxl@)™"

gives us a character of (o/m)*. Therefore X is indeed a Crfdicl1charal..ter of
the type claimed.

Let f he the conductor of the Dirichlet character X mod m, and Iet f' he the
conductor of the corresponding CrOJJcncharakter mod m. X ©
is then induced by a character X': ff/Pl—+ st, €0 the Gri;
X: 1m---—-;. stmod mi,; the restriction of the Crilfkllcharakter
This implies that  If. On the other hand, the (;nHic.-wh,m, fic,,
is the restriction Gcij/le,wh,,calitec X" -5 so xr is the composite

of (0/m)* — (0/f ¥ 25 St (see (6.2)), By the above, X" givep a character

Jfpf----+ St such that the Dirichlet character x : .I"JP"----+ st factors
through JFIP1 Hence fIf'. so that f = f. D

(6.10) Corollary. The charac/cn, of the ideal clw,s group CIK = .1JP,
e., lhe charncters x : .1 - S! such that x(P) = |, are precisely the
Grof>Cncharaktere x mod | sati8f"ying X,-x. = I.
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Proof: Form= | we have (o/mr = {I}. A character X of J/P is
mod 1. The a-;sociated character Xt i€ trivial, so
= xs(ar'x((@)) = I, and thus Xe,.,= I, hecausc K* is dense
If conversely x isa Gn?[:encharakter mod | satisfying Xoc. = I, lhcn

(@) = xr@xcla) = yi(@) = 1,
for a EK. Therefore x(P) = |, and xis a character of the ideal da@€
group. a

To conclude this section, let us study the relation of GnlfiencharaAterc to
characters of Ihc idele clai,i, group.

(6.11) Definition. A Hecke character is .1 ch::irac/cr of the idclc ci.'ls. € group
C =1/ K¢ of the number field K, i.e.. a contimwu,; homomorphism

X: St

of the ideJe group 1= [JPK; such that x(K€) = I.
In order to deal with Hecke characteri, concretely. consider an integral

ideal m =np pip of K, i.e., up :_ 0 and np = 0 for p IX. We ai,i,ociate to
this ideal the s11hf{mup Jm of I.

i"x L_, where It'= 1 u@nf, I-.= TT K
pt-x. Pl-..,

Jm

if pfx, then U;™ is the group of units Up if n =0, and the n-th group

of higher units for n ::_ 1. We interpret /"™ as the multiplicative group R* of
the R-algebra R = K R = TTpl-x. Kp. Observe that Jm differs i\ightly
from the congruence suhgroup I" = TIP u?pl introduced in chap. V1,* I, in

that, for real p, we have the factor U@°* = R:, imtead of the component K;.
The effect is that/ ;JmK* is not the ray class group r'’/Pm mod m, but
i<;ornorphic to the quotienl J*/ pm by the group pm of all principal ideab (a)
such that a== | mod m - this is seen as in chap. VI. (1.9). We will refer
to J™/ pm as the smalt ray class f.iroup.

We call ma module of definition for the Hecke character X if

Every Hecke character admits a module of definition, i,ince the image of
X @ nriex.Up ... .5 is a compact and totally disconnected subgroup of
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S*, hence finite. and so the kernel has to contain a subgroup of the form
flrt,X- Ul“-‘) where 1Ip = 0 for almost all p. For it we can take the ideal
m = fipt-,, p*’p as a module of definition.
Smee x(Jt) = I. the character x : C = I/ K@ --,,. St induce€) a character
X :C(m)--—--+ st
of the group
C(m) =1/1/"K*.

But if will not in general factor through the small ray class group
YTK* pn;pm (see chap. VI, (1.7), (1.9)), which bears the following
relation to C(m).

(6.12) Proposition. There i€p an exact sequence

-+ IMnK*/1/"nK*. -+ /m/ft'-, . JtTKH/L/K* -, L

In the second Olc. one ha-. /m n Ke = O™ 1" nK*= | ad
™/Im = 1y, *, and so T"K*/1PK* = R* /0" o

Given a Hecke character X with module of definition m, we may now
con@truct a Grijficnchara/.:.rer mod ma€ follows. For every pf 00, we choo@c
afixed prime clement rrp of KP and obtain a homomorphism

< 3. C(m)

which maps a prime ideal p f m to the class of the idele (mp) =
(. L Lrmp. L1 ...). Thi:-. mapping doe:-. not depend on the choice of
the prime elements. since the idClc€ (up), up E Up, for pf m, lie in 1",

Taking the composite map

I cmy 2 s

yield@ a 1-1 correspondence between Hecke characters with module of
definition m and GriHiell(‘haraktere mod m. The rca:-.on for this is the
following






482 Chapter VII. Zeta Functmns and L-series

(6.13) Proposition. There i.<; a canonic,il exact sequence
I+ Kmi/d" € JIm x (o/my* x R*om --1..+ C(m)---+ I,

where O is given by

0O(a) = ((a)-!, a modm, a modom).

Proof: For every a £ K\ml, let & E / be the idele with components Gp = a
for p fmoo and (1P = 1 for plmoo. 11 is then obviou<; that

(@) =Zimodli"K*.

Let us decompose the principal idCle a according to its components in
| =1; x ,~ asaproduct a= a;acx., and define the homomorphi-;ms

cp: (o/m)*---+ C(m). ifr: R*om---+ C(m)

by
cp@) = Jax, modl;"K*, ifr(h) = h-1 modIr'K*.

where every h E R* = lex i€ considered a€ an idele in /. For a E o,

a @ | mod m, wehave afG ' It <; I, so we getin C(m) the equation
p(@) = [{Ja™) = [aia-x| = [aj = I, where | J indicates taking classe-".
This -"hows that cp is well-defined. For every £ E om, one has F1 E tt, :-0
[e,,J = [Exfr] = [sl =1 inC(m).and thus 1/1(£,.J = I. Con@equently 1/f is

well-defined. We now define the homomorphism

1 .Im x (o/m)* x R*/om------ + C(m)

by

'((a, amod m, h mod om)) = c(o)rp(a)fr(h),

and we :-how that the resulting sequence is exact. The homomorphism 8 i€
dearly injective. ForoE K(mJ one has

f(8) = o (0))- {@ilr0) =Q Ziax,a@} mod ItK* = 1,

sothat ' 08 = I. Conversely, let
j((@ o modm, hmod 0"} = c(ayp(a)ijr(h) = I,
and let a= nr-tmx ):!I"". Then
c(o) =y mod IFK*

for some idele y with components Yr = n? for p f moo, and Yp =1
for p | moo. This yields an identity





ylla™h-*=1;x with I; El/" and X EK*.
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Ly = rr7a = Lpx in KP- and so
ipx, 50 that x E utrl,

For p 1 moc one has (yci
vp = Vp(a-1x). For pim one has (ycia,x,h-p = |
and also O = Ip = v.,(a-1x) since a is relatively prime tom. This gives

a=(ax-1Y.

AsxE uté‘ one hasx== | mod m, hence
@ty = rp(a).

Finally, for ploo we find (ycia"'h-)p = ahp® = x in Kp, so that
h =arcx-. and thus

wiax) =) |
So we have
(a, amod m, h mod CJm) = ((ax-l)‘ ax-1mod m, ax-1 mod o).
and this shows the exactness of our €equence in the middle.

The surjcctivity of/ 5 proved as follows. Let a mod ttK* be a cla@€
in C(m). By the approximation theorem. we may modify the representing
idele a, multiplying it by a suitable x EK™*, in -;uch a way that cip E ut"J
for pim. Let a= TTptrn"- pvp(<>pJ. Then we have

c(@ = y mod /@nKe.

where the idele y has components vp = ep E Up. for

pT moo.and vp =1 for pImoo. This gives E and if we define

h = a@'-then f((n. | mod m,h mod vm)) = yh-* = ya-x, = a mod It"K*.
[m)

By the preceding propoition, the characters of C (m) corre€pond |- | to
the characters of 1m x (o/m)€ x R*/o'n that vanish on O(K(rn) /om). i.e., to
the triple€p X, xr. X,...., of characters of ,/**!, rc€p. (o/m)*. resp. R*/0'", such
that

X( (a))-lxr(a mod m)x"'(a mod om)= |

for a e k(m). This makes X a Griiflcntharakter mod m, and €ince X; and
Xyeorsy are uniquely determined by X, we obtain the

(6.14) Corollary. The correspondence x r+ X :ic is 1-1 between characters
of C(m), i.e.. Hecke character.€ with module of detinili0l1l1 m, and
Gritao,ch,rmi,tere mod m.
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Exercise I. Let m= N',=ym, be a ecomposition of M INWO INlegrai Lacals wmen
arc pairwi€c n:httively pmnc. Then one ha\ he decompositions

ofm)t = ]"[(o/m,)‘
i

m 7T = @m,"b"/o

_et xr be a character of (o/m)*, and let i bc the < t:haracter.\ of (o/m,)" dclined
W I yem o /o and if y, € my "0 !/d7 tarc the componentt of y v.ith
espect 1o the above decomposition, then

Tl ¥) = [T T (X2 )+
it
Exercise 2. Prove the MObius inversion formula: let j(a) be any function of
integral ideals a with values in an additive abelian group. and let
96 =@ f®).

Then one ha€
() = Zu( )s(o). |

Exercise 3. Which of the character€ ).(x) = N(xUIxI 1'*}%) of @a® are characters of
Re;orn?

Exercise 4. The charm.:ter\ ot the --@mall ray das€ group" .I"'/ P mod mare the
Gnijdcndwrakterc mod m @ut:h that =1

Exercise 5. thit every pair of characters xi (@my -, St and
@uch that

X1(Hx,.,_(c}=I forall FE

come€) from a Grrijdrncharukter mod m.

Exercise 6. Show that the hornomorphi€rn c: J n, - C(m) 1s injective.

§ 7. Theta Series of Algebraic Number Fields

The group P of fractional principal ideals (a) is constituted from the
elementsa £ K*, and it sits in the exact -;cquence

| ot 0% -t K* ot Pt |

In order to form the theta seric& we will need, let us 110\ extend K= to a
group K+ whose clements repreent all fractional ideal& aE ./.





§7. Theta Series of Algebraic Numher Field€ 485

(7.1) Proposition. There isa commutative exact diagram

[E——

with a @ubgroup R* C; C* conwining K* .€uch rhal lal ER".._, and
(@) = [N

foral/u ER*.
Proof: Let the ideal class group .// P be given by a basis by j..........Ib, I.and
choose, for every one of the€pe basic classes, an ideal b1, ... , b, Then every

fractional ideal aE ./ can be written in the form
— Vi v
a=ab' b

where a £ K* is well-determined up to a unit e € 0%, and the exponent:,,
v, mod h, arc uniquely detennined. h, being the order of [bJin .// P. Let
b;" = (h). For every 1 E Hom(K. C), we choose a fixed root

h,r="&

in C inwch a way that h,T =h,, whenever r is complex. We define R* to
be the subgroup of CO generated by K* and by the elements h, =(h,n EC~
Each class [bl E .// P contain€ a uniquely determined ideal of the form

b=hb" . b" with 0<v <h,
and we con,;ider the mapping

fod/P — KYK*, fUsh =B - B mod K|

It is a homomorphi@m. for if b = b\'...b;.., and b' = b:;+ b+ and if
v,tv;=ew Ah, 0 i < h. then b\''...b€" isthe ideal belonging to
the class [bl[b7], and

f(bj/b'D=hf h1, a=h{"t .h1Llh;l e
=B --BG B mod k= fonfav.|

f is clearly @urjective. To show the injectivity, Jcl hi"...hi" = ae K~
and let h = hy -h, be the cla@> number of K. Then we have for
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the ideal ibtr b, E J that ah = a-h(h@Mni-h i) =
a-hcht* = (1). Since .1 is torsion-free, it follow:,, thal a= (1). and
s0 bt'...b," = (a) E P. From thif> we deduce that every element Q E i"
admit. a unique representation

Zi=ahtt .h1% 0::m< a EK*
We define a map

by

llI=aht's-h,¢G)=abe-* b"
Arguing as above, we <ce that this i:,, a homomorphism. It j:, surjcctive and
obviously ha:,, kernel Finally we have that Ihil= (Ihnl) ER@ and

<n((b)" @ Tib-10 IN() € 11) ™, | € 1)1 € IN(,II".

so that "}I((h1)) = IN(h,)I, and thus lal E R'.;_, 91((a)) = IN(@)! for
alla E f*, [m]

The clements a of i" w,cd to be called ideal numbers - a name which
i:-. somewhat forgollcn but will be u:,cd in what follows. The diagram (7.1)
implies an i,;omorphism

K'/K' ™ J/P.
For EK* we write if. and . lie in the same class, ie., if
ah ' E K*. Wecall aan ideal integer, or an integral ideal number,
an integral ideal. The semigroup of all ideal integer5 will he denoted by
Furthermore we write. |. il @ E 3. and for every pair E f*, we have
the notion of gcd(a.h) E K* (which is lacking inside K*). The greatest
common divisor i, the ideal number d (which is unique up to a unit) such
that the ideal (d) is the gcd of the ideals (a).(h). Observe that the ideal
numbers are not defined in a canonical way. This is the reason why they have
not been able to hold their own in the development of number theory. (They
are treated in 146], [651.)

We now form an analogous exten:;.ion of the prime residue groups
(Z/ mZ)€ For three ideal number€ 0, h. m, the congruence

signifies that o ~ h and Y, E & U /0). If m = (m), we also write thi€
relation as a — h mod rn. Let m be an integral ideal. The semigroup 3ma
of all integral ideal number5 relatively prime to m i€ partitioned by the
etjuivalence relation = into classes. which we will write as a mod m. They
are given explicitly as follow€.
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(7.2) Lemma. Forevery a E C/tn] one has

amod m=a-+a(@ 9m.

Proof: Lel h Ea mod m, h #- a, i.e., h =aa for some a EK*, a-/=- I, and
h- a= cm, 1 E3. Then

a-i(h- a)=a- 1l (a - 1) = (@) S; (a Hm,
sothat h Ea+ a(a-)m. Let conver@cly h Ea+ a(a-')m,h#- a, and thus

h/a =a El+ (a-)m. Then one ha<, h ~a and (h- a)= (a)a- 1)S;
(a)(a Y)m = (m), i.e, mlh- a and therefore h = a mod m. D

We now consider the set
(©/m)* == {a mod m|a € 3™}

of all equivalence clay€pes in the @emigroup 3(ni of ideal integers prime tom.

(7.3) Proposition. (3/m)* i.€ an abelian group, and we have a canonical
exact 1,equem:e

Rl CLALL) IR (<1111 e N VA S B

Proof: For a, h E 3(m), the class ah mod m only depends on the cla™el,
a mod m, h mod m, o %e get a well-defined product in (3/m)*. Every
clabs a mod m has an inverse. Indeed, since (a)+ m = o, we may write
I = t, 0 #- a E (a),un Em.Consequently ala, so that a= ax,
XE and since | Ea(l+a-'m)=amodm,we@eethataxmodmis
the unit class, i.e., x mod mi's inver.,,e toa mod m.

The righl-hand arrow in the sequence is induced by a i+ (a). It is
surjcctive ">ince every class of J/ P contains an integral ideal relatively prime
tom. If the cla@s a mod m = a(l + (a)-'m) is mapped to I, then one has

(@ E P, and so a E u, (a m) = I. Hence a mod m =a+ m is a unit
in o/m. The injectivity of the arrow on the left is completely trivial, i.e., we
have shown the exactne€5. o

For an ideal cla<.€ JI E J/ P, we will denote by Jf E .I/ P in what follows
the class defined by
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where Di€ Ihe different of K I:Ql. Let m = (m) and D = (d), wilh some fixed
ideal numbers m, d. Form = o letm = |. We now study charactcr1>

Xi (3/m)*emmmmes +
and put x(a) = 0 for a E o such that (a, m) #- I. In the applicatiom, x will

come from a G,iifle,nh,,rn!icta mod m, but the treatment of the theta series
is independent an origin of X:

(7.4) Definition. Leta E 3 be anideal integer, and let fi. be the cla€s of(a).
Then we define the Gauss sum

reca)= L x()e21riTi(fas111d),

mod m

where X mod m runs through the cfa.€ses of (3/m)* which arc mapped 10 the
class ff. In particular, we put T(x) = r(x. I).

The Gauss sum r(x.a) reduces immediately to the one considered in *6,
X(.)c2,.11i\1yd_

In fact. on the one hand we have
y = Xa/md £ m-tig-L.
since the class of the ideal (v) = (a)(?)(m)-1(d) ! i€ the principal class
.R.R'm %) ! soy EK* and;ne finds
y E(y) = (@X)m-li)-1 S; m-1i)-1,

because a and X are integral. On the other hand, if X mod m is a fixed
class of (0/mr which maps to .R.', then, in view of (7.3), we the others
by XX mod m, with A mod m varying over the clasc5 of Therefore

r(x,a) = x(X)rn,(x,y),

and in particular

00 = x(D)alx. »)
with y = which satiSfies (ymtl. m) = | since ymi.'l = (x) and
((?),m) = Consequently, r(x,a) doc<, not depend on the choice of
repreSclllative€y ?, and theorem (6.4) yields at once the

(7.5) Proposition. For a primitive character x of (0/mf, one has
r(x,a) = Y(@)r(x)
and Ir(x)| = -
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The thela series H(x, z) used in §2 in the treatment of Dirichlet L-1->cric;,
arc attached to the field We now have to find their analogue€p relative to
an arbitrary number field K. Given admissible clement p E NI 2 (see
§3, p.448) and a character X of we form the Hecke theta series

X (a)N (a")cirlia;/ mdl,a),

where m.d are fixed ideal numbers such that (m) = m and (d) = D. We take
m=1ifm=1 Thecase m = I, p=0 i€ exceptional in that the constant
term of the theta series j5 X (O)N(OI') = 1, whereas it is O in all other casc1>.

Let us decompose the theta series according to the ideal classe!-. .R E J/ P
into partial Hecke theta series

o7&, x,2) o x(@)N(a")cIT1(a@/Irmil,al,

where a varies overall ideal integerl> in the class It e R# k* which
corresponds to the ideal clal->s Jt under the iiomorphism R*/k* @ J/P.
For these partial theta 1->cric™>, we want to deduce a transformation formula.
and to thi€ end we decompo€pe them further into theta 1->erie1> for which we
have the general transformation formula (3.6) al our di€yposal.

Let a be an ideal relatively prime to m Y%hich belong;, to the
clas1> Jt and leta e be an ideal number such that (a) = a.
(7.6) Lemma. A.@sume !hat m i- | or p i- 0. 1f x mod m varies over the

c/1,1.9ses of (o/m)*, Ihen one has
O7(R, x.2) = x(@N@") ¥ x08f(x,0.zcla’/mdl)
v ot m
where I is the lattice m/a S; Rand
Hj-(r.0,:)= L N( (-F -L)LYyerri((+gl€ .+
QE"

Proof: In the theta €eries O1'Jt X.Z). it suffices to @um over the elements of
fin d™1 because X il-. zeroon the others. Every X mod m E (2i/m)*
i€ either disjoint from Ji. or else it b contained in In view of the exact

@equence (7.3)
|-+ (0/mr=-mt (3/M)*mmmt JIP-—met 1,

the clasl->e1>





ax mod m = a(x +a~'ml
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arc the different residue classes of (3/m)* contained in€y- Thi:-. givcs

NI, 7)= L L x(@x)N((at+t(!;)I)c;rila(1+€p)€/1r11d, a(<+i:)\

2 mr<im g<er

= x(@)N(afl) L x(x) LN( (x+ g)P) ciTi(e+g):la"/miu-g'
xnmdm  g<cl

= x@N@") Y x(x)e,’t(x.(),z\az/md\)I 0

For any admissible element p = (pr), we will write p for the admis€ible
clement with ggmponcnb P, = PT- From the transformation formula (3.6)
for the series Uyand propo,;ition (7.5) on Gauss sums. we now obtain the

(7.7) Theorem. For a primitive character x of (3/m)*. one has the
transformation formula

(R K. — 12 = WG PN (/P )P 7 )|

wilh the const;mt factor

0
Imd J<Tilm)
This factor ha. € absolute value IW (x. P)I =1.

Proof: The lattice I dual to the lattice I = m/a S; R is given. according
to (5.7), by *r' = a/mD. (Here as in 84, the asterisk €ignilies adjunction with
rei-pect to{ . ). ie. = (*ax.y).) The volume of the fundamental
mesh of I isby chap. |.

ul(r) ©<Ji(m/ay/id;l € N( Im/alyN( Id)yL
From (3.6) we now get
[0} 0/'.(cO, - I/Imd/azl,) QA(CJH;,(O,X.,Imdja"I).
with the factor
AG)@ [IM'N(Im/al)N(dI™] _, N( (Imd/a’l,jl)"+1)
© [, €] _,N( Imdja'l"y N((c/mr+l)

and the ,cric@
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Writing g' = the rules c.;tated in §3 give
\t,g") =Tr(a,-g/md),

1/Imd/a’lc,,") € I'g,Imd/a?1/imd/al';g) € {g.fimdi g)
and N((*g)P) = N(gl'). If @' varies over the lattice 1", then g varies over
the set

(md/a)T" = (md/a)a(mD)-* = (j' N0) U {0}
Suhstituting all this into (2) yields
®) OJ'.,(O,X,,Imd/aZl)1
0 N(( _ny ) L N(i./)e2""1t 1(axgmd)enii_g:/,mdl.;).
nz E(.@'nc;Ju[ol

Let us now consider fir@t the special case m = I, p = 0 (which was
essentially treated already in §5). In thi€ case, we have (An 6) U{O} =
\ag | g EK. (ag) S; 0) = aa-' = al'. Consequently
0"(Rx2)= L eriagndia:= L eni(:1ad1.91 =0r(zlaz/dl),
gelr ¢Er
PR D = X MR = g (z1d)a?)
se(RNE)I0}

Equation (1) thus becomes
IR, x = 1/2) = N(2/D) 10T (R . 7.2).

Now assume m -I- 1 or p # 0. Then we have x(O)N(OI') = 0. Substituting
(3) into (1) and (1) into formula (7.6), with - 1/Z instead of:, we obtain

£IPQix, - 1/:))=N@L) L  x@)0j(.1.0. - Vzimd/a 21)
\ mos m

B ¥ N(gp)( > X{a'\,)(,l'rrTr(u,\,u/mdi)Hrrr\p:/\!m/\

e ROA © mod m

with the factor

N{a?”
B(z) = A(:)(x),-
N{md/a)l')
No%. consider the sum in parentheses. If x varies over a 1,ystcm of
representative<;; of then aa varies over a "Y<€lcm of representative!.
of those classes of which arc mapped under 2. J/P to the

clal,s it Furthermore. i€ an integral ideal in the Jf. and since Jt
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bear:- the ame relation Jf.R = fmi)] to Jt as Jtdoc5 to J.t. we recognize the
sum in qucgion as the Gauss sum

r(x,.iz) = L x(a., )e2Jrl r,(a\@inrdl.
\ mod m

Suhstituting: in now the rc@ult (7.5),
Tx.0) = X0
we finally arrive at the identity
(@) 01'(.fl,x, -1/c)€ W(x,p)N((c/;J"+)e"(. €,X,C)
with the factor

W(x,P¥ [ildp)@rIN(Imd/a21p) N@Me
N((md/u)l’)

)

— 10 ((Imdl)7)
iTitoleNn € N

=@fiLGHNCII]
vV TTimJ Imd
where one has to observe that Tr(p) = 'fr([)). al'= *ar, a*a= lal2, and
ImdI = (@Imdl)L = ImdIlI' because Imdl ER€. Since Ir(x)l = 0—
we have IW(x,I')l = 1. n

Ifma==lor P -1-0, we find for the special thelil :, eries:
OrX2) = X x(@)N (@) emileslmdl-a N gr(g 5 7

and (7.7) yields the

(7.8) Corollary. 67 (x. — 1/z) = W(X.F)N((:/i)”*%)HF(T(.z).

We recommend Ihill the reader who has studied the above proof allow himself
a moment of contemplation. Looking hack, he will reali/.e !'he peculiar
Yeay in which almm,t all fundamental arithmetic propertie€ of the numher field
K have been u€ed. Fir€t they served to hreak up the theta serie€p, then these
con@tituents were re@huflled by the analytic transfonnation law, hut in the end
they are reassembled 10 form a new theta €eries. Having contemplated this. the
reader should reflect upon the admirable @implicity of the theta formula which
encapsulates all these a€ppect€ of the arithme!JC o! the number field.
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There is however one important fundamental law of number lheory which
does not enter into this fonnula, that is, Dirichlet's unit theorem. This will
play an e@sential r61e when we now pa<,s from theta €peries to L-serie€ in the
next section.

Exercise J. Deline ideal prnne numbeVi and ">how that unique prime factorirntion
hold, in K*

Exercise 2. Lct (1 be the scmigroup ideal rnteger,. If d = (a.h) is the gcd of
a.h, then there cxi@t clements E (0! ,uch th.it

d=.w+yh.
Furthermore, we have a rc@p. r -@il/h, unle\ 1 =0, re@p. y = 0. Here the

notation « ~ 8 means ¢

Exercil'>e 3. The congruence 111 — h mod m ha'> a @olulion m 3 with integral 1+ 1
and only u (a,m)lh. Thi'> @oluliun i> unique mod m, provided (a,m) = 1.

Exercise 4. A system ol linitcly]man) congruence\ with pairwi'>e rel,nivcly prnnc
moduli i> simultaneously solvab{ if every congruence i€ €olvablc individually m
such a way that the individual @olution€ arc equivalent (with re€pect to~).

Exercise 5. If a. m E 3. then there cxi€b m every re@idue cla\ mo<l i prime tum,
an ideal integer prime to a.

Exercise 6, For the factor groug] "/ " the group pm of all pnnclpal ideal, (a)
such that ¢ = | mod m, one the ©cquencc
I o/ s (O/ml----.. .Inspm > 1.
where 0" ={I-E ¢ = | mod m).
Exercil>e 7. Let Remi he the preimage ¢ ;w ynger i o+ b and let

Km= (aE K' las= 1 mod m). Then one ha@ (B/my* = K™ 7k "

§8. Hecke L-series

Let m be again an integral ideal of the number field K and let
Xt S

be a character of the group of ideals relatively prime to m. With re.,pect to
this character. we fom1 fhe L-">eries

Lix.n@l: _x (a)_
*91(0)

where a varies over the integral ideab of Kand we put x(a) = 0 whenever
(a.m) -I- 1. Then the following propo:c,ition holds in complete generality.
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(8.1) Proposition. The L-serie. €L (X,s) converges absolutely and uniformly
in the domain Re(s) :z_ | + 8. forall 8> 0, and one has
|
Lx .) @ Q l—  XDrvJ)-

where p varic. € over the prime ideal @ of K.
Proof: Taking formally the logarithm of the product

I
£(.)@ Q 1= X(Pryd(p)

gives the scric@ .
logf:(s)@!: I _x_ (e

p u=t nl1(p)™
It converge€p absolutely and unifonnly for Re(s) = a 2: 1 +8. In fact,
@ince Ix(P)l % 1, and 1JI(P}1 = NIL(P)I° 2: prrgna 2: p+\ and since
#{pip] d =[K : it admits the following convergent upper bound
which is independent

d
Y — g =dlogg(l+8).

pon BP
This shows that the product
. 1 @ xP))
()99 lx(Duvi(D):' @exp(@ (@’ .
is absolutely and uniformly convergent for Re(€) 2:: I+ 0. Now develop in
this product the factors
| I+ x (Pt xoy+
I - x(p)ryd(p)- ryJ(p)  ryd(p)"
for the finitely many prime ideals p1,... ,p, <uch that 91(p,) ::: N, and
muhiply them. This yields the equation

) I KB o x(P
[¢] LT o (3t 13t(p)"1 Y

€ I xn)

Jvlen ey
where L' denotes the sum over all integral ideals a which are divisible at
'
most by the prime ideals p,. . p;. Since the mm contains in particular





the Lenn€p such that 91(a) 2 N, we may also write
d 1 x{a)

,11 L= x®DNPH™  simeny @)
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Comparing now in(*) thesum L' with the series L(x.s),we gel

| . Lol < I QI
1- X(JINIi(p,)-5 - imeN 1T1(a)-
pfn

S (>N LIRS
For N —-+ 0o the right-hand side tends lo zero, as il is the remainder tenn of
a convergent serie€p. since the sequence (Lmcn)<:N  J(@itg) NeN  iS monotone
increasing and bounded from above. Indeed, with the previous notations we
find
| s |
<NION Ql@:+h @ Olla)ic
@ 11(1- 91p)-0+si)_,
=

and

log(,¢ (-91(p,) (>+bl)-)€ t,log((l -9'I(p.)-!"">)-")
1
.o 1
= ieter DQLEIIEAN
o0 |
1@ @1 MIOMIL
|

SE d ppid+8)
@dlog(W H)) m]

We now face the task of analytically continuing the L-serie€ L(x.s)
attached to a GréBencharnkter X mod m, and setting up a suitable functional
equation for it at the same time. So we are given a characler

X J" -+ Sl‘
such that

x(()) € x.(a)xoo(a)
for ail integers a E o relatively prime to m, and there arc two associated
characters
xr: (o/m)* ---+ S and X" :R* ---... St
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The character Xt extends in a unique way to a character
Xf: (3/m)*--+ 5%

such that the identity(*) holds for all integral ideal numbers a £ &(ml prime
to Indeed, the restriction of the function x,(a) of 3(ml
to is given by the original character Xt oflo/m)*, so it is in particular
trivial on 1 +m and thus yields a character of 3/m)*.

The L-series of a Grgj3cncharacter of 1m is called a Hecke £-series.
If X is a (generalized) Dirichlet character mod m, i.e., a character of the ray
class group .rm/ pm, then we call it a (generalized) Dirichlet £-series. The
proof of the functional equation of the Hecke L-scries proceeds in exactly the
same way as for the Dedekind zeta function, except that it is based on the
theta transformation formula (7.7).

We decompose the Hecke L-series according to the classes JI of the ideal
da@:;, group .// P as asum
/,(x.,)=r, L(fi.x.s)
"

of the partial L-series

L(Rx.-<)=

and deduce a functional equation for those. If all one wants is the functional
equation of the L-series L (X.s), this decompo€ition is unnecessary; it may
also be derived directly using the transformation formula (7.8), because we know
how to represent any ideal a. by an ideal number (this wa€y not yet the case
when we were treating the Dedekind zeta function). However, we prefer to
establish the finer result for the partial L-series.

By (7.1). we have a bijective mapping
cRnO)/o* €@ {1 EJtl aintegral} ai—1 (a),

where J1 E * [k* corresponds to the class JI E J/ P with respect to the
iwmorphism Kol k* © J/P. Therefore we get

LRxs)= L xqan-
ae'fl. IN(a)l1

where 9'l is a sy€tem of representatives of
function as a Mellin transform. To this end, we

Lx(s) = N(rr-1)Ix(s/2) = N(n-"13)






We want to write this from *4 the L-function

Ny
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which has been attached to the G(C IR)-set X = Hom(K, C). The character
X-x: of R* corresponding to X is given by (6.7) as

XX, (X) = N(X"IxI-p+,q),

for an admissible p E ﬂ| Zand a q ER+- We puts= sl + p - iq, where
s £ C isasingle complex variable, and
L,J(x.s) = Lx(s) = Lx(sl + p- iq).
In the integral
rx<s/2):/N<e*",v*/2>d

R

we make the subt>litution
y s nlaPy/imdl (2 O,

where m.d € 3 are fixed ideal numbers such Ihat (m) =m and (d) =) is
the different of KIQ. We then obtain

I'x(s/2) = N(‘ 2 r/2)N(la £ e-rr(ar/imdl,a)N(y'/2)€

and, since N ([md|%72) = (|dg |MU(m))*/2,
1

di |9 .x/zLo0 5 —_
(ldx |7(m)) W Fam

:z’(x)/e””“m"’“““N(y“/z)d—.y
RY Y

where c(x) = N(Imdl-'+1)112  Mulliplying this by xr(a)N(aP) and
summing over a e 9l yield5, in view of

x1(a)N(aP) Xo@N@Plalp+ul) (@)

PN N(lar) ~ ING@”

the equation

ldx (UMY P Locx, LR x.5) = e(x) f 2N 2
¥

R

with the series
x(y=) L xi@Neaf)e-rr{ayimdia).
asol:

We now consider the completed L-series





AQLx,s) ~ (IdKEII(m)IL2Lx(x,5)L(ILx,8J.
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Then we get
AQix,,) € ceofll g(y)N(y'ir-
1

We now want to write this function as®n integral over the series

O x,2) := 0P(R, xr.2) = e + Xil@)N (@P)e™ s/ imdl-al,
where the summation is extended notonly - as in the case of g(y) - overa
system of representatives VI of (1 n 3)/o*, but over all a EJin 3. We have
E(X) = I ifm =land p =0, and e(x) = 0 otherwise. We will proceed in

the same way as with the Dedekind zeta function (see (5.5)). Just as we did
there, using

y = Xt/n'  x = NC@Un, I= N
with n = 1K : QI], we decompose

R =S =k, M =dxx !!i!_

Then, observing that

Ny”2=) N(xs/2)N(ts/2nf—=  N(x(p-14)IN)r-¥a(s+Tr(p-1q)/n),

we obtain the identity

*) A(Itx,5)=c(x) J J NOAI-"1IR)g(xtH 1) d*xt" €
os

withs'= Y%2(s +Tr(p - ig)/n). Thefunction under the second integral will
be denoted by

LBy = NG/pta)?) 3 Xf(a)N(a”)g*"““"'”/""‘”v“l
aeR
From it, the theta series fJ(ft. x, ixt I/n) is constructed as follows.

(8.2) Lemma. N(x(p-iaif2)(0(3t,x,ixt1111)-E(x)) = ¥ g«xue\{m)l
fco*





Proof: For every unit f E o* one has Xcx,(X1(f) = x((F)) = I, :,0 that
we get
N{[£1771) = Fale)N (") = xeIN ™|
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We put for short€ = xt Ifn Jimdl and obtain
ROL(1£12x.t) = N({r,-,a)/l) L XL(W)N( (W)P}e-rr(n,$,1-a) = RFIL(x.t).

aEQt

Since@n3 = U Fol:, we get

Lo
NP AP (R, x.ixt ") — e(x)) =

= L L Nep-ay2)xrrn)N((W)") e-rwt.m)

rcoraecF'R
2 gemle.) = ¥ gm(lel*x.1). [}
co* gco*

From this lemma we now obtain the desired i.ntegrn.l representation of
the function 11(.R.. X.5). We choo:;,e as in §5 a fundamental domain F of S
for the action of the group F is mapped by log : R€ __:: . Rttoa
fundamental mesh of the lattice _ This means that we have

2

nelo*|

(8.3) Proposition. The function
AR 1. 9) = (1dk 1) Log (6, 9L (R, 1. 5)
is the Mellin transfonn
AQLX,,)eL(f,<)
ofthe function ;
f(t) = fp(.R., x.r) = (X} J N(x(p-,qlf)f)(.R., X,ixt11n)d*x
w
3

at s' = Y%<s + Tr(p - ig)/n). Here we have set n = [K : Q], c(x) =
N(Imdl-p+ig)*12, and w denotes the number of roots of unity in K.

Proof: One has

ooy [ watrionygrr,
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We have seen before that

= -
AQ@Lx.)€ ) foht ,€L(f.))
o
where .
fo®=c(9 ] amexnamx.
S
Sinces = u)El-@*Iry2r, one has

fo(t)@c(x) Lf g,;0cd'x.

rJElosl
J12F

In each one of the integrals on the right, we make the transformation
F > r2F, X1+ .2x and obtain

fo(t) @ c)f L Mffi(ry>x_t)d'x.
f VEIO*I

The fact that we may swap summation and inlegration is juStified in exactly
the same way as for the case of Dirichlet L-serie€ in §2, p.436. In view of
the exact sequence

s 1K) 0% [0*]----- |,

where /L(K) denotes the group of roots of unity in K, one has
#{cE |llei=11}= w, so that we get

L g:(1,1%.t) € wo,n(ry"xd).
Itl=>/
Using (8.2), this gives

fo(t) @ o/ | Rvt(lePx.t) dx
W rec

F
=m.[. NO(p-,a>)(0(- R, x,ixt11n)-c(x))d*x
F
€ f(t) - f(oo0).
Thir, together with(*) yields the claim of the propoition. [m]

It is now the transformation formula (7.7) for the theta €peries O(.R, X,z) =
OP (.It., XI- z) which guarantees that the functions f(t) = f, (R, X,t) satisfy
the hypotheses of the Mellin principle.
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s01
(8.4) Proposition. We have fi(Jt X,1) = ag+ o(e-"+1/") for some ¢ > 0,
and

a0 = MIGWD) e oy
F
ifm= 1and p= 0, and a = 0 otherwise. Furthennore we have

J,. (R X, |) = W)d+Ti(p)/n jF-1(.R', X

where .R.R' = [mi:!]. and the constant factor is given by

W(x) = [it, (fINC_™! Y-
Imdl

o
©

Proof: The first statemenl follows exactly as in the proof of (5.8). For the
second, we make use of formula (7.7). It gives us

0(Sl, X, - 1/c) = &P(@I, X1, - 11,) = WOON( (;IP+D&" (I, xr,,

= W)N( c,;;iP+he(l', ,,.),
because X'.'X.(t) =

N(XFIXI-P+11) = N((X)flixl-p-,q) = N(xFIxI-F-rg).
Observing the fact that the transformation x 1—+ x ! leaves the Haar measure
d*x invariant and takes the fundamental domain F to the fundamental domain
p-1, (7.7) yields for z = ixt Un:

FFQ, '0) = 00 INC(P-U3)/2)0(- R i) d*x

1
:ml

N(xX-(p-igd/2)0(.R,x, -Lfixt1f)d*>..
"o

o

P-.

N(x-9-+r+)N(t(p+:)IMD (.. R, X, ixtilityd*x

= GLQALL) I N(x(f+1qV2)11;2+T,(p)/11a(.R" y.ixr1fn)d*x
KR
3

= W(x)d @1,(p)/nf,.-1(..R"y,!).

We have used in this calculation that N(xllz) = N(1)112 =
N(x") = N((*x)P) = N(xP), and that the character Xoc, the complex
conjugate of Xx;, is given by

I and





Taolx) = N (xP 1) 7). |





502 Chapter VII. Zeta Functions and L-scrie€p

From this proposition and (1.4), we now finally get our main result.
We may assume that x is a primitive GrOJJencharacter mod m, i.e., that
the corresponding character Xf of (o/m)* is primitive (@cc 86, p.472).
The L-series of an arbitrary character differs from the L-series of the
corresponding primitive character only by finitely many Euler factors. So
analytic continuation and functional equation of one follow from those of the
other.

(8.5) Theorem. Let X be a primitive GrijjJ:.Jem haracter mod m. Then the
function

AQLX,,s) € (IdKIIm)Y;, Loc(x,s)LE1X,s),  Re(.)> I,

has a meromorphic continuation to the complex plane C and . @atisiies the
functional equation

AQL x,5) € WAQH, X, 1= )

where Jt!t' = fm-0J, and the constant factor is given by

W(x) = [iTr(pIN(_I_)")]-1 -
Imd | jin(mj

It has absolute value IW (x) | = 1.

I\(R.,x.s) is holomorphic except for pole.¢ of order at most one at
s =Tr(-p+ig)/n ands= 1+ Tr(p +ig)/n. In the case m-1- 1 or p-1-0,
J\(R.,x,s) isholomorphiconallo[C.
Proof: Let_{it) = /,;(fi..,x,t) and ;@ (") = f. 1(.II'Xt). From f(t) =
ao + O(e-u ), g(t) =ho+ O(e-" 5 and

(@) = wosrioma

it follows by (1.4) that the Mellin transforms L (f s) and L(g, s) can be
meromorphically continued, and from (8.3) we get

(it X,5) = L(f, @(s + Tr(p - ig)/n))
© WL(, @+ fr(p)/n - @(stT,(p - ig)/n)
=W()L(g, I O = s+Tr(p + ig)yny)

Q@WEAQIX. | - ),

where we have to take into account again that Xx(.r) = N(xI'lxI-p-,").
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According to (1.4), in the case ao i- 0, L(f,s) hasa simple pole ats = 0
ands = % + ‘fr(p)/n, i.e., A(R, X.s) = L(f, %(s + Tr(p - ig)/n)) has a
simple pole at s = Tr(-p + ig)/n and@-= I+ Tr(p + ig)/n. If m #- |
or pf. 0, thenag =0, i.e., A(.R, X, s) is holomorphic on all of IC. ]

For the completed Hecke L-series

A(x,,) € (1dK 191(m)) I'L~<x .. )L(x.) @ |: AQL x. )

we derive immediately from the theorem lhe

(8.6) Corollary. The L-series A(x,s) admits a holomorphic continuation
lo
CATr(—p +ig)/n, 1+ Trip +ig)/n)]

and satisfies the functional equation
A(X ..,) € W<x)A(x.1-.,).

Itis holomorphic on all of IC, ifm i- I or pi- 0.

Remark 1: For a Dirichlet character x mod m, the functional equation
can be proved without using ideal number€. by splitting the ray class group
Jm 1 pm into its classes .R, and then proceeding exactly as for the Dedekind
zeta function. The Gauss sums to be used then are those treated by HAS.SH
in [52). On the other hand, one may prove the functional equation for the
Dedekind zeta function by using ideal numbers, imitating the above proof,
without decompm,ing the ideal group at all.

Remark 2: There is an important allemative approach lo the results of
this section. It starts from a character of the idele class group and from
the representation (8.1) of the corresponding L-series as an Euler product.
The proof of the functional equation is then based on the local-to-global principle
of algebraic number theory and on lhe Fourier analysis of p-adic number fields
and their idcle class group. This theory was developed by the American
mathematician JOHN TM1c, and is commonly known for €hort as Tate's thesis.
Even though it does meet the goal of this book of presenting modem conceptual
approaches, we still decided not to include it here. The reason fur this is the
clarity and conciseness of Tate's original paper [241, which cannot be improved
upon. In addition SF.RGF |.LANG"c. account of the theory [94) provides an
illustrative complement.
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Thu:;. instead of idly copying thi:;. theory, we have chosen to provide a
conceptual framework and a modem treatmenl of Hecke's original proof
which is somewhat difficult to fathom. It tum€ out that Hecke's approach
continues to have a relevance of its own, and can even claim a number of
advantages over Tate's theory. For the functional equation of the Riemann
zeta function and the Dirichlet L-scries, for example, it would be out of
proportion to develop Tate's fonnalism with all its p-adic expense, since
they can be settled at a beginner's level with the method u:;.cd here. Also,
L-series, and the very theory of theta series has to be seen as an important
arithmetic accomplishment in its own right.

It wa@ for pedagogical rearons that we have proved the analytic
continuation and functional equation of L-series four times over: for the
Riemann zeta function, for the Dirichlet L-scries, for the Dedekind zeta
function, and finally for general Hecke L-series. This explains the number
of pages needed. Attacking the general case directly would shrink the expose
to little more than the size of Tate's thesis. Still, it has to be said that
Tate's theory hal- acquired fundamental importance for number theory at
large through it1- far reaching generalization1-.

§9. Values of Dirichlet L-series at Integer Points

The results of§ 1 and 92 on the values ((I - k) and L(X, | - k) of the
Riemann zeta function and the Dirichlet L-scries will now be extended to
generalized Dirichlet L-series over a totally real number field. We do this
using a method devised by the Japanese mathematician TAKURO SHiN1At'I (who
died anearly and tragic death) (see [127], [128]).

We first prove a new kind of unit theorem for which we need the following
notions from linear algebra. Let V he an n-dimensional JR-vector space, k
a subfield of JR, and Vk a llxed k-structure of V, i.e., a k-subspace such
that V. = Vi ek !R. By definition, an (open) k-rational simplicial cone of
dimension d ir, a ‘iubset of the fom1

Clorovoovd) =+ + v e e Y|

where v1....,vJ are linearly independent vectors in Vk. A finite disjoint
union of k-rational simplicial cones is called a k-rational polyhedric cone.
We call a linear fonn L on V k-rationaf if its coefficients with rel-pect toa

K-basis of Vi, lie ink.
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(9.1) Lemma. Every nonempty subset different from /0) of the fonn

P= {x EV IL,(t) €O, O<i _

. Mi(x) >0, 0< j:.Sm}

with nonzero k-rational linear forms L,, M, ¢ = 0 orm = 0 is allowed) is
adi. @joint union of finitely many k-rational cones, and possibly the origin.

Proof: First let P = {x EV | L,(x) 0,i =

£}, with k-rational

linear fonns L 1, ... , Lt #- 0. Forn = landn = 2 the lemma is obvious. We
asf.ume it is estal ed for all R-vector spaces of dimension smaller than n.
If P has no inner point, then there is a linear form L among the L1, ... , Lt

such that P is contained in the hyperplane L = 0. In this case the lemma

follows from the induction hypothesis. So let u E P be an inner point, i.e.,
Ly(u) > 0....,Ly(u) > 0.Since Vk is dense in V, we may asf.umeu £ V..
Forevery i =I, ....£ letaip = {x EPI L,(x)=0).If (5, #- {OJ, then

o,P, {OJ is by the induction hypothesis a disjoint union of a finite number
of k-rational simplicial cones of dimension < n. If a simplicial cone in &,P

has a nonempty intersection with some il; P, then it is clearly contained in
a, P n 0:P. Therefore i11Pu .. U OrP, {0} is a disjoint union of k-rational
simplicial cones of dimension < 11, so that

uJp, 0)=LJc,
£l

where C.1 = C(v1.--,Vd;)s Vi, .... Vs |E V@, d1 < n. Forevery j E J
we put Cy(u) = C(V1, ....vq.u). Thisif a (d; + 1)-dimensional k-rational
simplicial cone. We claim that

P, {0y=LJcLa LI ci) LIRu.
J<cd JE/

Indeed, if the point x E P, {OJ lies on the boundary of P, then it belongs
to some O,P, hence to LJE.1c;. On the other hand. if., belongs to the
interior of P, then L, (x) > 0 for all i. If x is a scalar multiple of u, then
we havex E Asl-ume this is not the case, and let s be the minimum
of the numbers Thens > Oand x - :u lies
on the boundary of P.Since x - su #-  there isa unique j E ./ such that
x - su E Cj, and thus there is a unique j E J such that \ E Cy(u). This
proves the claim.

Now let
p={xev L0 0<iust Mi@®)>0, j=1..m}
Then
POLEVIL ) C0 Mix) 20}
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i€ a disjoint union of a finite number of k-rational simplicial cones and {OJ. For
every ] = I, .. .m, leta,P ={x e Pi Mix) =0). Ifa simplicial cone
in P has nonempty intersection with 01P, then it is contained in aJJ. As P
=Ji" Lo P,we see that since P" {0} isa disjoint union of finitely
many k-rational simplicial cones, then so is P. a

(9.2) Corollary. If C and C' are k-rational polyhedric cones, thenC" C'
is also a k-rational polyhedric cone.

Proof: We may assume without loss of generality that C and C' are k-
rational cones. Let d be the dimension of C'. Then there are N /,,.-rational
linear forms L 1....., Ln-d, M1, ... , Mtl such that

C={reV|Li(x) = =Ligx)=0, M) >0, ... Mylx) > o}.
If we define, foreach i = I, N -d,
Ci={reC|Liwy=---=Liax) =0, £Li(x)>0}.

and foreach j=1, d,
L.(X)@ .. L, Jx)eo,
c: & I M1(x)>0, ... ,M;_1(.>O.Mj(x)_:::O,

then we find, as can he checked immediately, that C "- C' is the disjoint
union of the sets CT. ,Ci_ v Cii .. ,ci3,Cp ... ,CJ. By (9.1). these
are either empty or k-rational polyhedric cone€. Therefore C "- C' i5 also. D

It is a rare and special event if a new substantial in5ight is added to the

foundation€ of algebraic number theory. The following theorem, proved by
sHIN1IWe in 1979, falls into this category. Let k be a number field of degree

n=fK: QIJ,and letR = [n,Ct be the corresponding Minkow5ki space
(r E Hom(K, C)). Define

RO+ = { (xr) ER*l x > 0 for all real 3
(Observe that one has R:+i = R€ only in the case where K i€ totally real.)
Since R = K @,; IR, the field K isa IQ-structure of R. The group

o o* ARY
o} =o' Nk,

of totally positive units acb on R?1; via multiplication, and we will show that
this action has a fundamental domain which is a Q-rational polyhedric cone:
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(9.3) Shintani's Unit Theorem. it E is a subgroup of finite index in
then there exist. € a IQI-rational polyhedric cone P such that

R}, = JeP (disjoint union).
wef

Proof: We consider in R7+i the nonn-one hypersurface
S={reR,|[INWI=1}]

Every | E R@-+i isina unique way the product of an element of S and of a
positive scalar element. Indeed, x = IN(x) II/n(x/IN(x)I 11"). By Dirichlet's
unit theorem, £ (being a subgroup of finite index in 0*) i'> mapped by the
mapping
e:5— [TIR]",  (x) — (loglx.]),
T

onto a complete lattice I of the trace-zero space H =
{x & (TTrRI+/ Tr(x) = 0). Let <) be a fundamental me@h of T, let
"iii be the closure of </J in H, and put F = £ (’iii). Since "iii is bounded and
c\o'ied, @0 is F. It is therefore compact, and we have

()

Let\. E F and Us(x) = /y ER | lit- Yyll < 8},; R@u. 0 > 0. Then there
is clearly a basis 1-1. .. ,Vn & UA(x) of R such that X = u vi+ -+ tv,.
with t, > 0. Since K i"> den€e in R by the approximation theorem, we may
even choose the v, to lie in Kn  VJ(\). Then Cs = C(v,. ....v,,) is a
1QI-rational simplicial cone in R7+i with x E Cs, and every y E Cii is of the
form y = Az with A ER: and z E Uo(x). We may now choose 8 sufficiently
small so that
Con SC/j =0 forall FEE, c#- I

If not, then we would find sequences Avzj,, E C1..., A A, ER:,
z,,z2;, E andr. E £  #- |, such that = s"A;,z€, and thus
PvZv = and :‘a would converge 10 x; now Pc- would
converge to | as = N(z@®), i.e.,, x = (limc,.)x. This would mean
thatJime, = I. is impossible. since£ is discrete in R.

F being compact, we thu'i find a finite number of IQI-rational cones

Ci--e-- Cm in R@q such that

@ F@LJI(C,nF)
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and C; Nec, =0 forall FE£ t#- 1 andalli = L. ,rn From (1)
and (2), we deduce that
R(1i=U LJtC,.
1=1FEE

In order to lurn this union into a di5joint one, we put cli= ciand

¢,(N=Ci-..... L JECL. =2, ...,m,
’ o

eC; and C, are di:, joint for almost all€ E £. Hence, by (9.2), C,°\ is a
Qi-rational polyhedric cone. Observing that C; N EC, = 0 for EEE, e - I.
we obtain

R+ = u LJ £C?1

121 ccE
and £CHINC?J =0 for allEet’ and i =2, .., M.
We now as:,,ume by induction that we have found a tinite system of

(Qi-rational polyhedric cones c\vl. . ctliv=1..,m- 2 satisfying the
following properlies:

(i) cclisc,
(i) R7+= U e
1=1ccE
(iii) cci®) NnC, =0 forall£ € £, ifi :Sv and i -=f-}.
We put ¢,<"+l) =Ci") fori :S v+ 1, and

civ+l) =ci"l* U Fceel for il ii+2
HoF
Then c[v+!l, ... ,c€;'+1J is a finile 5ystem of Qi-rational polyhedric cones
which enjoys propertie:,, (i), (ii), and (iii) with v+ | instead of u. Con:,equently,
c/™-l, .. ce:n13 babystem ofQ-rational polyhedric cones wch that
R(+i= LI cC,i" u (disjoint union). o
1=1 tEE

Based on Shintani 's unit theorem, we now obtain the following description
of Dirichlet’5 L-series. Let m be an integral ideal, 1m; pm the ray class group
mod m. Let x : Im/ pm -,,. be a Dirichlet character mod m, and

x(0)
Lx.<) @ @
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the associated Dirichlet L-series. If R varies over the classc€p of .rm/P™,
then we have
L(x,.n € 1:xQ@DWI,.,J

with the partial zeta functions

(Q...)& 1 ey

nmtegral

Let R be a fixed class, and a an integral ideal in .R.. Furthermore let
(I+ a-'mh =(1+ a-'m) n R7+i be the set of all totally positive elements
in I+ a-'m. The group

E=o0@'={eE IF=Imodm,t.ER@+i}

acts on (I+ a-'m)+, and we have the

(9.4) Lemma. There isa bijection
(A +a7'm)y/E —> fi, 3+ aa,

on/o the 8et R,y of integral ideal." in R.

Proof: Leta E (I+ a-lm)+-Then we have (a- l)a c; m, and :;.ince a and
m are relatively prime, we geta- | Em, ie, (a) E pmJ. Hence aa lies
init Furthermore, we have aac; a(1 + a-lm)= a+ m= o, :;;0thataa is
integral. Therefore a 1-- aa gives us a mapping

1+ a-lm)+-—+R

It is sur:jective, for if aa, a E pm, is an integral ideal in R, then
(@- la C; mac;m, so thata E | +a !m. and also a E Rr+J' and :;a
a E (I+ a-'m)+- Forah E (I+ a-'m)+ we have aa = ha if and only
if (a)= (h), @o that a= he with ee Since r E (I+ a-'m)+, it follow:;,
that e E £, i.e.,, a and h have exactly the €ame image if and only if they
belong to the same class under the action of £. D

The lemma implies the following fonnula for the partial zeta function
(@1...),
1

Ry)= —
YR = Sy TN @T
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where VI runs through a syslem of representatives of (I1+ a-‘m)+/ E. To thi,;
we now apply Shintani's unit theorem. Let

re+= LI Ll
i=ifEn,
be a disjoint decomposition of R7+J inlo linilely many Q-rational simplicial
cones C,. Forevery i = I, ,m. letv,y ... v,J be a linearly independent
syslem of generators of C,. Multiplying if nece..sary by a convenient totally
positive inleger, we may assume that all v;f lie inm. Let

¢/ =fuvy+..+uvmlo< s,

and
R&CH = +a"'my, nc]

Then we have the

(9.5) Proposition. The set. @ R(fi.,C;) are finite, and one has
£ L5
TRy = 7
Na)* /5
with the zeta functions
2(Ciox, )= TN+ 21w + -+ 24, via,)| |

where z = (z1, ...-2,1, varies over all d; -tuples of nonnegative integers.
Proof: R(fi.,.C,) is a bounded subset of the lattice u-'m in R, translated

by I. It is therefore fmite. Since C, £ R(+J is the simplicial cone generated
by v,1, ,v) Em,everya e (I + u-1m) n C, can be written uniquely as

with rational numbcri,, Yt > 0. Putting
vi =xt +z1, O0<re.S1l, 0.5 EZ

we have E I+a  'mbecauseLztV,t Ems;a-'m.Inotherwords,
everyake +a-'m)n C, can be written uniquely in the form
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with t = L:Xev;e E R(Jt,C, Since
(I+ am)+ = IJ LJg +a'm)ncc,
AcE

a=x+ LZfV.c runs through a system 9'l: ofrcpre!,cntatives of (I+a-*m)+/ E
if i runs through the numbers I, , m, x through the elements of R(.\t, C,),
and z = (z1, ,ziJ) through integer tuples with  2: 0. Thus we indeed
find that

C(R.8) = —— =]

(9.6) Corollary. Forthe Dirichlet L-1,eries attached tothe Dirichlet character
X :dm/ P . C*,we have the decomposition
x(@) m
L)@ & U@ & 2, G

where It runs through the classes 1m;pm, and a denotes an integral ideal
in .It, one for each class.

The relation between zeta functions and Bernoulli numbers hingesona purely
analytic fact which is independent of number theory. This is what we will de1-
cribe now.

Let Abeareal r x n-matrix, r _:::n, with positive entries a,. 1 .:S j .:Sr,
: 2 n. From this matrix we conl-truct the linear forms

Lity. ... = and Lj(z1. ,z)=[:a1lz1
J=1

For an r-tuple X = (x1,.. ,x.) of positive real numbers, we write the
following series

t(Ax,8) = NL:<, +x-.
=1
On the other hand we define the generalized Bernoulli polynomials B@(A, 1)

by
Bi(A.x) = — ZB‘(A 09,

where Bi.(A, x)(*1/(k )11 is the coefficient of

Uk-Dn@ .1 1l /-1
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in the Laurent expansion al O of the function

ﬂ expluxaLi(r) |
exp(uLy(t)) - | 12
in the variables u.t;, Attt . t, Forr =n=1and A= a,

we have Bk(a, i-) = a--'Bdx), wilh the usual Bernoulli polynomial B/.:(x)
(see § 1, exercise 2). The equation

Bk(A, I -x) = (-)"(k 1H Bk(A,X),

where | - x signifies (1 - x3, . |- x,), is easily proved.

(9.7) Proposition. The series ((A,x,s) is absolutely convergent forRe(s) >
r/n, and ii can be meromorphically continued to the whole complex plane.
Its values at the pointss =1 - k, k = 1.2, aregiven by

(Ax1-0) @ (1 2rex.

Proof: The ab€olutc convergence for Re(s) > rJn is deduced from the
convergence of aseries Lﬁ ui by the same arguments that we have used

repeatedly. It will be left to the reader. The remainder of the proof is similar
to that of (1.8). In the gamma function

r(s)"=/---f [Tet 0y Voo dey
i=l
5

o

we sub@titute
ti — LIz +x)zl|

and obtain

r(s)'1,0i L;(z + x)-s

[ ]
=J. . ep [ - @ tLi(z+x)](t1eet,) -1 dtz- -dtn.
o o
Summing thisoverall: = (1, .z,), z, € Z, :, 2::0, and observing that

L tLez+x =L (@ +xou.
1

1=1
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yields the equation

PO E(A x5) = f : -/g(r)(r. et ...(1,1

with the function

=) Tl x0(0 NI
~=1ooexp(la(t) - 1

We cut up the space IRn imo the sub@ets

D, =/tER"10.:S .S/ £= 1 o ,i- Li +hovn n)
for i =1, .,n,and get
&) ((Ax,s) = I'(5)n 1J a1 ny-tan due
D,

In Di we make the transformation of variables
t=uy=u(.n, Yn)-

whereO<u,0_:S_vt .:SI forfcf.iand_y, = I.This gives

Oy 90 - t,y-tdin - dt,

° .-(,)1 / . \] gluy)m yr)' " dyeJu” ‘du.
o o0 o '
ForO< ¢ < |, let now 1,(1), re@p. I, (+x). denote the path in C consisting
of the interval [I, FJ, resp. 1+X. cj, followed by a circle around O of radius
t: in the positive direction, and the interval IF, 1J, re5p If, + ooj. For E
;ufficicntly small, the right-hand side of the last equation following (1.9)
becomes

@ A [13('0’)“"‘7‘(1_[ vy ' T d)’»]du.
e LA
Le(+o) L)
with the factor
r(s)-*
A(s) = (ehins _ 1)(€2)T11 _ 1yl

where one has to observe that the linear fonn€ L1, ...oLr have positive





coefficients. It is easy to check that the above expre5Sion, as a function of the
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variable .1, is meromorphic on all ofC. As for Ihc factor A(s), (1.2) implies
that | g-s)dl
A(s) = Quin (c2rrin., _

Let us now puts= 1-k. The function eu:rrl.'(ezruus— 1)/(e2nn - 1) takes

I)(e2-'m _ 1)-lenrrise

the value (-1)11rl-lin ats = | - k. Thusexpression (2) turns into
GDUk-D k)" . —.-nl [ [p-(uy)ut(l- AF(TT yr)-kn dYIf du,
n (2m) , fil
K, K@l

where Kc denotes the positively oriented circumference of the circle of radius
f, and where we have to observe that the integrals over (00,£1 and Le,00),
resp. over 11.c] and [E, Jj, kill each other in (2) ifs= I - k. This

obviou:;ly ((- 1)'(I-w I'(k;" /n) times the coefficient of ung<-1y (TTr, :ci
in the Laurent expansion of the ‘function

R(U.YL, == 1Yi-1,IL1};+1, ... ,uyn) = fI expud XD

]
Hooexp(uli(y)- 1 ya
which i:;.a holomorphic function of u, t;, g fe 111in the direct
product of n copies of the punctured of radius r. Therefore tl_we valu_e
of (2)1 ats = |- k equals (-I)" I - x)(i3/n. Inserting this
into (1) gives
(AX, K= _v_t BK(A, . x/1)

ni=-1
= (D'k-nBKAOL X

Together with the equation Bk(A, 1- x) = (- I)"(k * r BKk(A, x) mentioned
above, this gives the degired rc<;ult. 0

Theorems (9.5) and (9.6) now imply our main result concerning the value:;,
of Dirichlel L-<;crie5 L(x,s) at integer points s = 1-k, A= 1.2, If K
is not totally real, then these value€y are all zero (except if X is the trivial
character, for which s = 0 is not a zero). Thi<; can be read off immediately
from the functional equation (8.6) and (5.11).

So we let K be a totally real number field of degree n. Numbering
the embeddings r : K -+ IP/. identifies the Minkow€pki R with IRn.
and R7+i = R with the set JP/.: of vector€ (xi1, with positive
coefficient<; x,. Given the Q-rational simplicial cone C OIR: generated by
1-11, ..Vu/,, we again consider Ihc zeta functions






((C,.r,s)=@IN(x+:11111+- +zd,v111,)l
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vi=@. ey, =14
then A; = (aiol) b, a (d, x 11)-matrix with positive entries, and the k-th

component of zivii+-  + z3,v,3, becomes

LiG ....zq) o
Forx e R:, we therefore get
«(Cox.8) = Lﬂ Lji(z1, ... .z11Y" = ((A;.x.5),
z k=l

and, from (9.5) and (9.6), we obtain by putting s = I - k the

(9.8) Theorem. The values of the partial zeta function ((.il, s) at the integral
pointss = | - k, k = 1,2.3, ... , are given by

m
SR — k) = N X [ 1y
iz N

and the values o(thc Dirichlet L-series L(x,s) ,ire given by

m I 34 Lix1-peox
[E LT

" - enci.¢y K

Here u is an integral ideal in the class 5t of J"/ P™.

This result about the Dirichlet L-series L (X, s) also covers the Dedekind
zeta function (K (s). The theorem says in particularthat the values L (X. I -k),
fork 2. 1, arc algebraic numbers which all lie in the cyclotomic field Qi(x1)
generated by the values of the character Xr. The values (K (1 - k) are even
rational numbers. From the functional equation (5.11),

(K(1- s) = 1dK 1s-I( cos¥ I+, (sin¥)" ~I'c(s)n(K(s).
we deduce that (K(I -/...) =0 for odd k > I, and it ir, =I=- 0 for even k > I

If the number field K is not totally real, then we have (K(s) = 0 for all
S$=-1,-2,-3,

(9.9) Corollary (S1H;J:L-KuNc;nv). The values of the partial 7Cta function
((R, s) at the points s - -2 are rational numhern.
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Proof: Lctag, .. ,.ar be nonzero numbers in K, and let A be the (r x n)-
matrix (a; . where a is the i-th componenl of a ‘after identifying R = Rn
according to the chosen numbering of the embeddings r : K IFL It is
enough to show that B!,_(Ax) is a rational number for every r-tuple of
rational numbers\ = (X1, .... Xr), To see this, let LIQ be the normal
closure of KIQ and cr € G(LIQ). Then a induces a permutation of the
indice {1,2, ... ,n) so that

aa11=Gjrr(i) (I_: ini=ho,n).
Now we had By(A,x) = Y: L@=I BK(Axtl, where Bk(A,_){| was the
coefficient of @ =Dtr¢p, . t_ut+1, . ,tn).-1 in the Taylor expansion

of the function .I:I
ur 2XpGULIE
J=1 exp(uLq(t) - 1)

with Ly(t) = aysts + -+ arntn, This makes it clear that Bk(Ax)Ui lie@
in Land that aBk(A.x)(,) = BK(Ax)i"ll_Therefore Bk(A.t) b invariant
under the action of the Galois group G(L 1Q), and thus belongs to Q. [m)

The nature of the special values of L-series at integer points has recently found
increasing interest. Like in the class number formula, which expresses the
behaviour of the Dedekind zeta function at the point€ = 0, the properties
of all the 5pecial values indicate a deep arithmetic law which appears
to extend to an extremely wide cla;r, of L-scries, the L-series attached
to "motives” According to a conjecture of the American mathematician
- T Haigeficance of these L-values can be explained
hy a strikingly simple geometric interpretation: they appear according 10
the Lichtenbaum conjecture as Euler characteristics in etale cohomology
(@ee [99], 112J). The proof of this conjecture is a great, if €till remote, goal
of number theory. On the way towards it, the inrjights into the nature of
L-series which we have encountered may prove to he important.

Finally we want to mention that the French mathematicians DANItL BARSKY
and P11:.Rtfrt Ct.550u-Noccts have used S111," TAIV'1's result to prove the exi€tcnce
of p-adic L-series. These play a major réle in lwasawa theory, which we
have mentioned before. The p-adic zeta function of a totally real number
field K isa continuous function

C:z e Q.
which is related to the ordinary Dedekind zeta function (K (s) by
(Cn) @KL NQ - NPy

pip
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for all n € .N such that -n = | mod d, where d = [K(/1.-2p): K] denotes
the degree of the field K(pz2,) of 2p-th root& of unity over K. The p-adic
zeta function is uniquely determined by this relation. Its existence hinges on
the fact that the rational value& /;K (-n) are subjected to ,;:evere congruences
with respect top.

§10. Arlin L-series

So far, all L-series we have considered were associated to an individual
number field K. With the Artin L-series, a new type of L-series enters the
stage; these are derived from representations of the Galois group G(LIK)
of a Galois extension LjK. This new kind of L-series is intimately related
to the old ones via the main theorem of class field theory. In this way they
appear as far-reaching generalizations of the old L-serie&. Let us explain this
for the case of a Dirichlet L-scrie€

1
Lix,s) = =[] —=
E U T—x(p)p~*
attached to a Dirichlet character
X 1 (ZImZ)* -+

Let G = G(Q(um)IQ) be the Galois group of the field Q(u,,,) of m-th roots
of unity. The main theorem of class field theory in thi& particular ca:-.e simply
describes the familiar isomorphism

(ZImz)' . G,

which sends the residue class p mod m of a prime number p fm tothe
Frohenius automorphism (j!p, which in turn i,;: defined by
'Pp(= for (EHM,,.
U&ing this isomorphism we may interpret X as a character of the Galois
group G, or in other words, as a I-dimensional representation of G, i.e., a
homomorphism
X: G--+ GLy(C).
This interpretation describe,;: the Dirichlet L-series in a purely Galois-
theoretic fashion, "
Lixs) @ TT .

pm 1= x(rp.)p-°

and allows us the following generalization.
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Let LI K be a Galois extension of finite algebraic number flclds with

Galois group G = G(LIK). A representation of G is an action of G on a
finite dimensional C-vector space V, i.e., a homomorphism

p: G -+ GL(V) = Autr:(V).
Our shorthand notation for the action of er EG onv E V is av. instead of
the complete expression p(u)v. Let p be a prime ideal of K, and let $Ill be

a prime ideal of L lying above p. Let G<;p be the decomposition group and
113the inertia group of ,.P- over p. Then we have a canonical isomorphhm

Gy/ly —> GlePle)

onto the Galois group of the residue field extension K(1,JJ)IK(1J) (see chap. I,
(9.5)). The factor group G'll/ /13 is therefore generated by the Frobenius
automorphism If'll whose image in G(K(I.I})IK(p)) is the g-th power map
X f-+ .-;11, where g = "JI(p). 'P'+l is an endomorphism of the module V"I of
invariants. The characteristic polynomial

det(l - (fqit; Vi)
only depends on the prime ideal p, nol on the choice of the prime ideal €
above p. In fact, a different choice €'lp yields an endomorphism conjugate
to ({<p, as the decomposition groups Gizand G<,p, the inertia groups Iti

und f.-:p,, and the Frobenius automorphisms 'P'+l and 'P'+I' arc :c.imultancous
conjugates. We thus arrive at the following

(10.1) Definition. Let LIK be a Galois extension of algebraic number fields
with Galois group G, and Icl (p, V) be a representation of G. Then the Artin
L-series ,ittached to p is defined to be

|
C(LIK ,p,s) = Q det(l - tpii9l(p)-s: Vi,

where p runs through all prime ideals of K.

The Arlin L-series converges absolutely and uniformly in the half-plane
Rc(5) € 1 +0, for any ti > 0. It thus defines an analytic function on the
half-plane Re(s) > I. This is shown in the same way as for the Hecke
L-series (see (8.1)), observing that the e, in the factorization

d
det(1 — ppUp) 5 VIP) = f‘[(l —6,-‘.TI(p)”‘)|

o

arc roots of unity because the endomorphism 'P+I of Vt,,,,, ha€ finite order.
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For the trivial representation (p,C), p(a) = |, the Artin L-serics is
simply the Dedekind zeta function f;K(s). An additive expression analogous
to the expansion

1

k()= 7+
Xn: N(a)*
does not exist for general Artin L-series. But they exhibit a perfectly regular
behaviour under change of extensions LI K and representations p. This
allows to deduce many of their excellent properties. As a preparation for this
study, we first collect basic facts from representation theory of finite groups.
For their proofs we refer to [125].

The degree of a representation (p, V) of a finite group G is the dimension
of V. The representation is called irreducible if the G-module V doer, not
admit any proper G-invariant r,ubspace. An irreducible representation of an
ahelian group is simply a character

p:G- =GL1(C).
Two reprer,entations (p, V) and (p', V') are called equivalent if the G-
modules v and V' are isomorphic. Every representation (p, V) factors into
a direct sum
V=VIiEB -EBV.1
of irreducible representation1-. If an irreducible representation (Pa, Va) is

equivalent to precisely ra among the rep ions in this on,
then ra is called the multiplicity of Po: in p, and one writes

P~ fau.

where Po: varies over all non-equivalent irreducible representations of G.

The character of a representation (p, V) is by dclinition the function
Xp: G - C, Xp(a) = trace p(u).

One has Xp(l) = dimVv = degree(p), and Xp(ara-l) = Xp(r) for
all a,r E G. In general, a function / G -a- C with the property
that /(aru-'y = .f(r) is called a central function (or class function).
The special importance of characters comes from the following fact:

Two representations are equivalent if and only if their characters are equal.
If p~ La ro:Pa, then
Ko =2 TaXp,
«





520 Chapter VII. Zeta Function€ and L-@erie€

The character of the trivial representation p : G -+ GL(V), dimV = I,
p(u) =1 forall a E G, is the constant function of value I, and is denoted
by 1a, orsimply I. The regular representation is given by the G-module

vecele{l: xrlX, ecy,
rEG

on which the u E G act via multiplication on the left. It decomposes
into the direct sum of the trivial representation Vo = C Laec u, and
the augmentation representation { La<=G x,,.u | Ler x,. = 0}. The character
associated with the regular, resp. the augmentation representation, is denoted
by re, resp. uc. We thus haver<; = uu + le;, and explicitly: rc(a) = 0
foru == 1, rc;(l) = g=#G.

A character x is called irredulihle if it belongs to an irreducible representation.
Every central function rp can be written uniquely as a linear combination

rp=Lrxx, ‘X EC,

of irreducible character€p. rp is a character of a representation of G if and only
if the ex are rational integers ::.: 0. For instance, for the character re of the
regular representation we find

re =% x(x]

where X varies over all irreducible characters of G. Given any two central
functions rp and if; of G, we put

@WWel_ L ea@v.. ge4G,
12 (e

where iff is the function which is the complex conjugate of ifr. For two
irreducible characters x and x', this gives
, Vs ifx =X,
IXX)e 0 ifx ' X,
In other words, (, ) is a hermitian scalar product on the space of all central
functions on G, and the irreducible characters form an orthonormal basis of
this hermitian space.
For the representations itself, this scalar product has the following
meaning. Let
V=VIEB---EBV,

be the decomposition of a representation V with character X into the direct
sum of irreducible representations V,. If V' isan irreducible representation
with character x', then (x, x') is the number of times that V' occurs





§10. Artin L-€peries 521

among the V, up to isomorphism. For if X, is the character of V,, then
X =Xi+ oo + Xrs, othat

(X, X)) € (X1,x1 + -+ + (x,.x),
and we have (X,,x) = 1 or 0, depending whether V, is or is not isomorphic
to V' Applying this to the trivial representation V' = C, we obtain in
particular that

dimVG= @ L x(@), g =#G.

g JEG
Now let h: H -+ G be a homomorphism of finite groups. If cp is a central

function on G, then h€Xcp) = cpoh & a central function on H. Conversely,
one has the following proposition.

(10.2) Frobenius Reciprocity. For every central function ijJ on H there is
one and only one central function h*(i/1) on G such that one has
(@-h.(n) & (N(@)..fr)

for all central functions cp on G.

This will be applied chiefly to the following two special cases.

a) H is a subgroup of G and h is inclusion.

In this case we write cplH or simply cp instead of h*(cp), and ifr* instead
of h*(i/1) (the induced function). If cp i5 the character of a repre:;.entation (p,
V) of G, then cplH is the character of the representation (pIH, V).If ijJ is
the character of a representation (p, V) of H, then ifr* is the character of the
representation (ind(p), Ind1(V)) given by the induced G-module

Indg(V) ©{ f: G—+ VI /(rx) @rf(x) forall r E NI},
onwhich a E G acts by (crf)(x) = f(xa) (see chap. IV, §7). One has
Jfr, (@231, fr(wr-1),

where T varies over a system of representatives on the right of G/ H, and we
put il(TerT-1) = 0 if ot rf. H.
b) G is a quotient group H/N of Hand his the projection.

We then write cp instead of h*(cp), and i/11 instead of h*(i/1). One has

e e L .o

If cp is the character of a representation (p, V) of G, then h*(cp) is the
character of the representation (po h. V).

The following result is of great importance.
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(10.3) Brauer's Theorem. Every character X of a finite group G is a Z-
linear combination of characters Xi* induced from charncter€ Xi of degree 1
S@ociatcd to subgroups. H; of G.

Note that a character of degree 1 of a group His €imply a homomorphim1
X: H--+

After this brief survey of representation theory for finite groups., we
now return to Artin L-series. Since two representation.s V) and (p, V)
are equivalent if and only if their characters X and coincide, we will
henceforth write

|
LL K, X.)& Q det(l - p(€+0)91(p)--"; viv)

instead of £.(LIK, p,s). These L-series exhibit the following functorial
behaviour.

(10.4) Proposition. (i) For the principal character X = I, one ha¢
L(LIK,1..<) € (K(S).
(ii) 1t X, X" are two characters ofG(L IK), then
L(LIK,x + X',.<) € C(LIK, X,.,)L(LIK,x ,.,).

(i) For a higger Galois extension L' IK, L' 2 L 2 K. and acharacter X of
G(LIK) one has
C(L'IK.X,.,) € C(LIK.x,.,).

(iv) 1f M is an imermediate field, L 2 M 2 K, and X is a character
ofG(LIM), then
C(LIM, x,.,) € L(LIK, X,..,).

Proof: We have already noted (i) earlier. (ii) If (p, V), (p. V') are
representations of G(LIK) with characters X, X', then the direct sum
(pEBP', VEB V) isarepresentation with character X + X', and

det(l - rp,:pr; (V EB Vl)"ll) = det(l -rp,;pt; V¥'+)det(l - (.ut; V'l‘ll)i

This yields (ii).
(iiii) Let 'I3''31P be prime ideals of L' ILIK, each lying above the next. Let X
be the character belonging to the G(L 1K)-module V. G(L'IK) acts on V via
the projection G(L'1K)--+ G(LIK). It induces surjective homomorphisms

G,p—+ G,p, I't.v—+ Ly, G,p-/fo,_11-—+ G,pfl,;p
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of Ihe decomposition and inertia groups. The latter maps the Frobenius
automorphism rp13, to the Frobenius automorphism 1/J<.p so that (rprp, Vl-v') =
(rp'l}, yI-P). ie.,
det(1 — gt V13) = det(l — ot VI®) |
This yields (iii).
(iv) Let G = G(LIK) and H = G(LIM). Let p be a prime ideal of K,
ql, ... g, the various prime ideals of M above p, and ,P, a prime ideal
of L aboveq, i =1, ,r. LetG,, resp. I;, bethe decomposition, resp.
inertia, group of ,P, over p. Then H, = G1 N H, resp. /;y = /1 N H, arc the
decomposition, resp. inertia, groups of ,P, over g,- The degree of g, over p
is_{, =(C; :H;/,).i.e.,
Nea;) = Np |
We choose elements r, E G such that ,p, = ,P€". Then C, = r-'Cr,,
and/, = r,-';;ry. Let rp E G; be an element which is mapped to the
Frobenius iy € Cy//1. Then rpl = r 11{Jr, EC, is mapped to the Frobenius
ifllJ, E G, and the image ofip(* in HJ!/ is the Frobenius of,P, over g,.
Now let p: H - CL(W) be a representation of H with character X.

Then X* is the character of the induced representation ind(p) : C » GL(V),

V = IndJ(W). Clearly, what we have to show is that
det(l -1pt; V- = Judet(l 4 Mt w ).
1
We reduce the problem to the case G, = G, i.e,, r = . Conjugating by r,.
we obtain
det(-ip(r.1. W Ly=det(l-ipf,r.l (W) %rHr- )

and .f, = (C (C nrHr For every i we choose a system of

representatives on the left, a;;, of Gi mod Ginr, Hr,.-1 One checks
immediately that then {a,Jr,/ is a system of representatives on the left of
G mod fl. We thus have (see chap. IV, §5, p.297) the decomposition

V=EBrrlirlw.

Putting V, = EBJ a,Jr, W, we obtain a decomposition V = EB,- ViofV asa
C1-module. Hence

det(l - ipl; V" = o det(l - rpt; V",

Itis therefore sufficient to prove that





det(1-1{3t; V.'Y)=det(I-fr11; (r, W) 1nrHr-D)_
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We simplify the notation by replacing G; by G, /; by/, G, nr,Hr,-* by
H, f, by f =(G: HI),V,byV, and rrW by W. Then we have still
V = Indt(W), i.e., we are reduced tothe case r = L G; = G.

We may further assume that/ = I. For ifwe put G = G/, Fi= HJInH,
then V! = Indg(w'**H)_Indeed, a function f: G - W in V is invariant
under / if and only if one has f (xr) = f (x) forall r E /, i.., if and only if
it i€y constant on the right (and therefore also on the left) cosets of G mod I,
i.e., if and only if it is a function on G. It then automatically takes values in
wtnH, because rf(x) = f(rx) = f(x) forr e/ N H.

So let/ = |. Then G is generated by cp, f = (G : H), and thus

/o
V=W
=0
Let A be the matrix of ({13 with respect to a basis wj. ,wd of W. If E

denotes the (d x d) unit matrix, then

OE .. 0
00 H
Ca o 0

i€ the matrix of (4 with respect to the hasis {(fJ'wj} of V. This gives
-tE 0
det(l-tpt; V) =det ( : g | et —olt/ W
-tA E

as desired. The last identity is obtained by first multiplying the first column
by t and adding it to the second, and then multiplying the second column
by t and adding it to the third, etc. D

The character 1* induced from the trivial character | of the subgroup
{1} @ G(L IK) is the character re = LX xO)x of the regular representation
of G (LI K). We therefore deduce from (10.4) the

(10.5) Corollary. One ha.€
,d,) @Ke<l [ 1 C(LIK.x,)".
1 ey

where x varies over the nontrivial irreducible characters of G (LI K).





€10. Arlin L-scries 525

The starting point of Artin's investigations on L-series had been the
question whether, for a Galois extension LIK, thequolient t;L(s)/t;K(s) is
an entire function, i.e., a holomorphic function on the whole complex plane.
Corollary (10.5) shows that this could be deduced from the famous

Artin Conjecture: For every irreducible character x i- 1, the Artin L-series
L(LIK, x,s) defines an entire function.

We will '>CC pre:,,ently that this conjecture holds for ahelian extension'>. In
general it is not known. In view of its momentous comcquences, it constitutes
one of the big challenges in number theory.

We will show ncxl that the Artin L-series in the case of ahelian extensions
LIK coincide with certain Hecke L-series, more prcci:,ely, with generalized
Dirichlet L-series. This means that the propertie5 of Heckc's series, and in
particular their functional equation, trarn;fer to Artin series in the abelian
case. Via functoriality (10.4) they may lhen be extended to the non-abelian

The link between Artin and Hecke L-series is provided by class field
theory. Let LI K be an abelian extension, and let f be the conductor of LI K,
i.e., the smallest module

such that LIK lies in the ray class field KIIK (see chap. VI, (6.2)). The
Artinsymbol (€) then gives us a surjective homomorphbm

Jf/PLl---+G(LIK), amodPff------- + (LOK),

from the ray class group .If/Pf. Here JI is the group of fractional ideals
prime to f, and p! is the group of principal ideals (a) such thala = I mod f
and a is positive in Ky; = IR if p isreal.
Now let x be an irreducihle character of the abelian group G(LIK), i.e.,
ahomomorphism
X, G(LIK)-
Composing with the Artin symbol ( 1.I!S..), this gives a character of the ray

clas:,, group Jf/Pf, i.e., a Dirichlet character mod f. It induces a character
on Jf, which we denote by

Xz ti--+

By (6.9), this character on ideals isa GrOBencharacter mod f of type (p, 0),
and we have the
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(10.6) Theorem. Let LI K be an abeli.m extension, /et j be the conductor of
LIK, let x == 1 be an irreducible character of G(LIK), and X the associated
Grg/3encharakter mod f.

Then the Artin L -series for the character X and the Hecke L-scries for
the GrOjJencharakter X satisfy the identity

LLiKx,.) & f1 | Ll..,),
pEs 1- X<'PiYJ1(p)-s

whece S @ {pIf| x(1€) & 1}.
Proof: The representation of G(LIK) associated to the character X h
given by a I-dimensional vector space V =Con which G(LIK) acts via

multiplication by X, i.e., av=_x(a)v. Since f is the conductor of LIK, we
find by chap. VI, (6.6), that

PIf {=::> pisramitied {=::> |p#-1.

If x(/,p) == 1, then vin = {0J, and the corresponding Euler factor does not
occur in the Artin L-f.cries. If on the other hand X (/I,I) = I, then vii=c,
so that
det(l — ppMP) ™5 V/®) = | — x(pp)M(p) ™.
We thus have
L(LIK,x,) {1

| |
pif 1= X(@>p)ll(p)- pes 1 - X(@>p)<Il(p)->

and

fl I
Lx )@ Pit1_ ilp)<di(p)

For y f f, one has (be-) = (<p, and so X(p) = X(<p,:p). This proves the
claim. 0

Remark: If the character x: G(LIK)----+ i€ injectire, then S =0, and
one has complete equality

LK. 9 =L 0]
In this case Xis a primitive Griijiencharakter mod f.

If on the other hand X is the trivial character le;, then X is the trivial
Dirichlet character mod f, and we have

) =11 L(X.5).

1
pif 1 — Sy~
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The theorem implies Ihat the Artin conjecture holds for all Artin L-
series .C(L IK, X.s) which correspond to nontrivial irreducible characters X
of ahelian Galois groups G(LIK). For if Lx is the fixed field of the kernel
of x and Xis the Griijlcncharakter associated with X : GU-x IK) ' +
Ihen the above remark shows that L".(LIK.x,s) = L'.(LxIK.x,s) =
Hence L".(LIK.x.s) is holomorphic on all of C, because the @ame true
for L(X, s), as was shown in (R.5). This also scllles the Artin conjecture for
every solvable extension LI K.

Our goal now is to prove a functional equation for Arlin L-seriel>. The
basis for this will be lhe above theorem and the functional equation we have
already etablished for Hecke L-series. We however have lo complete the
Artin /.-series by the right "Euler factors” at the infinite places. In looking
for these Euler factors, the first nalural guideline is provided by the cal>e of
Hecke L-series. But in order to go the whole way, we need an addilional
Galois-theoretic complement which will be dealt with in the next section.

§11. The Arlin Conductor

The discriminant()= Dr.iK of a Galois extension L IK of algebraic number
fields admits a fine structure based on group theory. It is expressed by a
product decomposition

y=TTiGox .

where X varies over the irreducible characters of the Galois group
G = C(LIK). The ideals f(x) are given by

00 = Moo

Pr>:
with

& - G,

folxy =3 “Fcodim Vi,
i20 80

where V is a representation with character X. G, is the i-th ramification
group of L,i1lKp, and R, denotes its order. This di<,covery goes back to HmIL irn1v
and HeLMul HA,v The ideals f(x) are called Arlin conductors. They play an
important r6le in the functional equation of the Artin L-series, which we are
going to prove in the next <,cction. Herc we collect the properties needed for
thi€@, following essentially the treatment given by J.-P.SrRRt: in! 1221
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First let u consider a Galois extension LI K of local fields, with Galois
group G = G(LIK). Let f = hiK =IA: K] be the inertia degree of LIK.

Inchap. 11", 10, we defined, for any rr E G,
ir(a =vL(ax - x),

where x is an element such that o1. = oKlxl, and r. i€ the normalized
valuation of L. With thi€ notation we can wrile the i-th ramification group as

G =a EC liG@)==i+ 1j

One has ic;(rar %) = ir;(a), and iu(a) = iu(o) for every subgroup
H € G. If LIK is unramificd, then iu(o) =0foralla E G, a == I. We put
—fig(o)

aGlo) = Yz ictry fora= 1.

ar;i€p a central function on G, and we have

1
(ag, 1) = —= Y. agl(oy =0

#G

We may therefore write

ar; @"£fix)x. /IX)EC.
X

with X varying over the irreducible characters of C. Our chief problem
i€ to prove that the coefficients j(X) are rational =:: 0. Once we
have 1,hown this. we may form the ideal fp(X) = which will be the
p-component of the global Allin conductor that we want. First we prove that
the function ac 1>atistiel> the follm\.-ing properties (we use the notation of the
preceding 1,ection).

(11.1) Proposition. (i) If His a norml:d .€@ubgroup 0J'G, then
aGiy = (@G-
(ii) Jf// isany subgroup ofG, and if K' is the fixed field with discriminant
Kk Kk =p™ lhen
ag|H =vry + fxkan
(i) Let C, be rhe 1-1h rmification group of C, u, the ,wgmenlillion
charncler of G,. and (u, )@ the character of G induced from u,. Then one hal,

¢ |
ac= o (CO:G)(u,lL.
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Proof: (i) follows immediately from chap. 11, (10.5).
(ii) Leta EH, a == |. Then
ac;(a) = -.fi,1Ki(;(a). aH(a) = -.hwiH(a). ru(a) = 0.

ill(a) and ft,K = fr.whnkK, this implies
ar;(a) = IYH(a) HKiKaH(a).

Now let a= 1, and let "ouik he lhe d1Jferentof LIK. Let o1 = OK[r] and
g(x) be the minimal polynomial of 1 over k. By chap. Ill, (2.4). "puKk is

then generated by g'(x) = TT,.,.11(a r - .1). Consequently,

Since iu(a) =

VL(.DL1K) = vi_(g'(x)) = L ici(a) = Qac m.

By chap. 111, (2.9), we know. on the other hand, that OLIK = NLIK ("\DL3K ),
SOVK o NLIK = fizkvL gives the identity

au(l) = hikvd'.DLIK) = vK(QL1K),
and in the same way a;;(1) = VK'((LIK). From chap.lll, (2.10), we get
furthermore that

OLIK = (OK'IK)IL K'iNK',K (OtIK").
Thusru (I) =[L : KJ and p = vk(OK'IK) yields the formula
aG (D=[L : k vk OK:K) F Kikvk(OLIK) = wimHL) + K, kin (1).

(iii) Letg, = #G,, g = #C. Since G, i invarianl in G. we have (11,L(a) =0
ifa .G, and (u)*a) = -g/K, = -f - Rnl@1 ifa EG, a == I. and
Lrr<:cG(Il; )*(a)= 0.Fora E G@ "' Gatl, we thu€ find

— 1
@ = -fk +)= L€ --u)@.
e (Co: G))

Thi€ implies the identity for the case a = | a€ well. @ince hoth sides are
orthogonal to le. D

For the coefficients f(x) in the linear combination
ac; @ Lf(xIx.

we have, in view of a(;(a-) = a<;(a), that

f(xI = (aL;.x) —0 L_ae(a)x(a- 0 L aG(a-L)x(a) = (x,a().

g = #G. Forany central function i.p of C, we put

(@) & (&ac]
and

©G)e _I_ L w@ ge#c.
171 1 @G,
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(11.2) Proposition. (i) Ifrp is:1central ftmctioll on the quotient group C /JI,
and rp' i@ the corresponding central function o11 G, then

flo) = fle).

(ii) Jfrpisa central function on a .@uhgroup Il of G, and rp. is lhe central
function induced by rp on C, then

1(©,) © VK(OK'IK)&(l) + Jic,K f(@).
(iii) For a central function rp on G, one has

(©1@ |1 "cn - &G)).
0 go

Proof: (i) f(rp) = (rp.ac;fit) = (rp.(ac;)q) = (rp'.ac) = f'(rp).

(i) f(rp*) = (rp.ac;) = (rp,aulH) = v(rp.rH) +fK:ldrp,a11) = vrp(l) +
KK f(rp) with V. = v{((i.IK'IK).

(iii) We have = (rplG,, u,) = rp(l)-rp(G, ), -.0 the formula follows
from (11.1), a

If x is the charncler of a representation (p, V) of C, then x (1) = dimV
and x(G,) =dim vG,, hence
1(x) = Locodim VG,
1c:l §O
Now consider the function 1
h
rLid.1) :! (Go: G1),
D

which was introduced in chap. Il, €10. For integers m 2: -1, it i€)- given by
I/L1K(-l) = -L 13L1dO) =0, and

1JL1dm) = f,o form 2: I

=1 g0
The theorem of HAs.11:.-ARF (sec chap. V, (6.3)) now gives ut-. the following

integrality statement for the number f (X) in the case of a character X of
degree 1.

(11.3) Proposition. Let be acharacter of G of degree 1. Let j be the biggest
integer such that -1- 30 (wllen x =i we put j = - 1). Then
we Irnve

I'(X) @ Lk +l,





.md thi¢@ i€ a rational integer :
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Proof: Ifi::: j, then x(G,) =0, sothat x(1) - x(G,) =I.If i > j,then
X(G,) = 1.and so x(I) - x(G,) =0. From (11.2), (iii), it thus follows that

J s,
=% & e+ 1|
i=0 8o

provided j 2:0. If = -1, we have x(l) - x(G,) = 0 forall i 2: 0, and
henceby(ll.2), fO)=0=rwd-1)+1.

Let H be the kernel of X and [ the fixed field of /. By Herbrand,
theorem (chap. 11, (10.7)) one has

GI(LIK)H/H = G1+(L'IK) with ' = T/au(J).

In terms of the upper numbering of the ramification groups, this translate:,,

into
G'(LIK)H/H ~ G'(L'IK),

where t = T/LIKCi) = #1,KCTJILIL'Ci)) = T/1.'1KC/) (sec chap.ll, (10.8)). But

X(Ga(LIK)H/H) # 1, and x(G,<e(LIK)H/H) ~ x(Gi+,(LIK)H/H)
=1 forall 8 > 0, and in particular G(LIK)H/H -f. G111,(LIK)H/H for
all 0> 0. Since r1, IK (s) i€ continuous and <;trictly increasing. it follows that

G'(L'IKJ ~ c(LIK)H/H t, c+>(LIK)H/H ~ c+>(L'IKJ

forall 1+ > 0, i.e, l'is ajump in the ramification filtration of L'IK. The
extension L'IK is abelian and therefore t = 1JLIK(J) is an integer. by the
theorem of 1/,1.5s1:; and are O

NoY%s let X be an arbitrary character of the Galois group G = G(LIK).
By Brauer\; theorem (10.3), we then have

X =2 niis, ni€L,
where xi= is the character induced from a character X, of degree | of a
subgroup H,. By (11.2), (i), we have
FOO = Xni f i = 20 (v Qui )i (D) + frax £ -

where K, i<; the fixed field of H,. Therefore /(x) i:,, a rational integer. On the
other hand, (I 1. 1), (iii) show«p that goac is the character of a representation
ofG, so gof(x) = (x.goau) 2: 0. We have thus e:,,tablished the

(11.4) Theorem. If x isa char,-1.cter of the Galois group Ci = G(LIK). then
f(x) isarnlional integer 2: 0.
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(11.5) Definition. We define the (local) Artin conductor of the character x
ofG = G(LIK) lo be the ideal

fo(X) =p/(II_

Inchap. V, (1.6), we defined the conductor of an ahclian exten<,ion L IK
of local tield.., to he the smallest power of p, f = p", such that the 11-th higher
unit group Utl is contained in the norm group NLIKL*. The latter is the
kernel of the norm residue :-ymhol

(L LIK): K* — G(LIK).

which map€ v¥4J to the higher ramification group G' (LIK) = G4(L IK) with
i = utk<i) - see Y. (6.2). The conductor f = p" is therefore given by the
smallest integer n 2: 0 such that G"(LIK) =I.Prom (11.3) we thus ohtain
the following remit.

(11.6) Proposition. Let LIK be a Galois extension of local fields, and let x
be a cluiracter of G (L IK) of degree I. Let L be the fixed field of the kernel
of x, ;Jnd f the conductor of Lx IK. Then one has

Proof: By (11.3), we have f'(x) = + 1, where j i€ the largest
integer mch that Gi(LIK) i_ G(LIIx) =: Let t = 1/LiK (). Then one
has

G'(L,IK) € G'(LIK)H/H € G,(LIK)H/H.

and Gc(Lx1K) i; Gi+1(LIK)H/H = 1 for allE> 0.Hence r i-; the
largest number such that Cl([,llK) #-1.By the theorem ofll11.11F-4R1+, tis
an integer, and we conclude that f(x) =t +1 is the smallest integer >ouch
thalct!11(LxIK)= L.i.e.,f(x)=n.

We now leave the local situation. and suppose lhat LIK is a Galois
extcmion of global fields. Let p be a prime ideal of K, \.PIP a prime
ideal of L lying above 1. Let L,plKj; be the completion of LIK, and
G,:;p = G(L,.vIKp) the decomposition group of 11J over K. We denolc the
function ac,l on G'+J by a,;:p, and extend it to G = G(I.IK) by zero. The





central function
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immediately tum5 out to be the function (a,:p)* induced by a13IG,,p. It is
therefore the character of a representation of C. If now X is a character of G,
then we put

/(x.pl € (x.ap) @ /(XIG,p).
Then fr(X) = pi | j_ the Artin conductor of the rc@triction of X to
G,p = G(L:pIKr)- In particular, we have fr(X) = I if pi€ unramified. We
define the (global) Artin conductor of X to he the product

fix)@ TT fpxa-
Fl&

Whenever preci€ion i:-. called for, we write f(LIK.X) in€tead of f(x). The
propcrtie€ (11.2) of the numbers  f(x, p) transfer immediately to the Arlin
conductor f(x), and we obtain the

(11.7) Proposition. (i) fix+ x') € f(xIf(x"), f(I) € ().
(i) 1 I'IK i\ 1 Galois subextemion of LIK, and x is a charncter o(
G(L'[K), then
fLIK.X) € f(L'1K.X).
(i) 1t His a subgroup ofG with fixed field K' and if xis a character
of H, then "
HLIK. x2) = 05 N (LK 0)|

Proof: (i) and (ii) are trivial. To prove (iii). we choose a fixed prime ideal \.Il
of L, put

G=GLIK)., H=G(LIK). Gy=GLylkp]|
with p = 10 n K. and con\kler the decomposition
G={J GyrH|

into double coset€y. Then representation theory yield€ the following formula
for the character X of H:

Gy =2 X1,
2

where x' i€ the character x' (2)= x(r-*ar) of G;pnr //r-* and x: i> the
character of G13 induced by X' (see [119], chap. 7, prop. 22). Furthermore
11 = \.II'n K' are the different prime idcab of K' ahove p (see chap. L *9,
p..55). and we have

G-, = r-1G,;pr = G(Lpr IKp). H:pr =G,;pr n H = G(Lw IK@I@)-
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Now lelil<;p' = pﬁ 1 be the discriminant ideal of K. IKp, and let f'1J' be the
degree of, € over K. Thu€ NKIK(-13@) = pf.v,. Sin@c '

fp(LIK, X*) = pfx,IG,I1 and t'1J;(LIK', x) = -,p' (XIH-i_.,i,
we have lo show that

I(x,1G,,) @€ V,,;x(1J + h,; /(xIH'1,),
or, in view of (11.2), (ii), that
Fe1Gw =X f((xIHy) |

Bul H-+r = r Y(G<;pN rHr-*)r, and Xiii<,j,, resp.(x|Hyp )., arises by

conjugation @ €» rar-* from Xr, resp. X:. Therefore f((x|Hypr)s) =
1(x;), and(**) follows from(*). [m]

We apply (iii) to the case X = IH, and denote the induced character X*
by sc;H+ Since t(x) =l.we obtain the

(11.8) Corollary. kK = t(LIK, €>-u;fl).

If in particular H = 113, then sc;;11 is the character re; of the regular
represenlation. Its decomposition into irreducible characters X is given by

cc;@ LX()x.
1

Thbyields the

(11.9) Conductor-Discriminant-Formula. For an arhitra,y Galois exten-
sion LI K of global fields, one has

k= NExx@)-
|

where X varies over the irreducible characters ofG(LIK).

For an ahelian extension LI K of global field€p, we defined the conductor
tin VI. (6.4). By chap. VI, (6.5), it isthe product

1€nl,
»

of the conductors fp of the local exten€pion:-. L.pIKy. (1 1.6) now gives rise to
the following
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(11.10) Proposition, Let LIK be a Galois extension o[glohal fields, x .1
clwracter of G (LIK) of degree I, Lx the fixed field of the kernel of X , and f
the conductor of Lx IK. Then one ha¢

i ().

Now let LI K be a Galois extension of algebraic number field€. We fonn
the ideal
c(LjK, x) = D}1gNK1@(f(LIK, X))
of Z. The po'>ilive generator of this ideal is the integer
dLIK.x) € IdKI"II(f(LIK.xJ)

Applying (11.7) and observing the transitivity of the discriminant (chap. Ill,
(2.10)), we get the

(11.11) Proposition.  (i)c(LIK,x+x") =c(LIK,x)c(L!K,x").c(l,IK,1)
= idK],

(i) c(LIK,x) =c(L'IK,x),

(i) c(LIK.x,J =c(LIK',X).

Here the nOlation is that of (11.7).

§12. The Functional Equation of Arlin L-series

The tir<,t task is lo complete the Artin L-scries
1

£(LIKx.<J@ TT
ptoc det(l - <p,;pl3t(p)-: V v)
for the character X of G = G(LIK), by the appropriate gamma factors. For
every infinite place p of K we put
Le(s)I¢_ ifp is complex,
£,(LIK,x*+)@ /L,,(.)"Ly(s+ 1i", if pineal,

with the exponents n- = x@l+toil n- = X(J [(f-il. Here ({-p i€ the
distinguished generalOr of G (L'-J:JIK p), and

Lirs) = 1T 120(s/2), L (s) = 2(2n)_LI(D)
(sec S4). For p real, the exponent€ n'. 11 in Cp(LIK,x,s) have the
following meaning.





536 Chapter Vil. Zeta Fum:tions and L-scne€y

The involution tpg:; on V induces an eigen-;pace decomposition V =
V- EB V-, where
vt @ {xeVIoexe .\, v- @ { e Vlgraxex\.

and it follow1> from the remark in S 10, p.521, that

dimV' @@ X(Il+x(+0J), dimv-@€ (XilJ-x(€,,J)

The functions Lp(L IK, X,s) exhibit the same behaviour under change of
fields and characterl, as the L-seriel,and the Artin conductor.

(12.l) Proposition. (i) .Cp(L IK, X + X',s) =.Cu(LIK, X,.\).Cp(L IK, X ,_1).
(i) L'IK isaGaloi. €1,ubextensionofLIK andx aclwr.:iclcrof'G(/, IK).
then
L(LIK.x ...) € Cp(L'IK.X ...).
(iii) IfK' il,an intermediate fieldofLIK :md x acharacterofG(LIK"),
then
C,(LIK, x,..,) & [1Cq(LIK', X, ).
ap

where q varie1> over 1he place,; of K' lying above p.

Proof: (i) i1> trivial.

(ii) If i;plg:J1p arc place-; of L 2 L' 2 K, each lying above the next.
then 'PIl is mapped under the projection G(LIK) -+ G(L'IK) to <Pl
So = X(fl-r).

(i) Ifp  complex, then there are precisely m = \K": Klplace€ g above p.
They are abo complex, and the claim follows from XxAlJ = mx(l).
Suppo-;e pi€p real. Let G = G(LIK), II= G(LIK"), and let H\GJG,"11 be
the set of double cosets HrG,"+3 with a fixed place i;p of L above p. Then v...c
have a bijection

H\G/Gii--+ {q place of K' above p), HrGg.l ,---i,. q, = ri;plK,

(sec chap. |, 89, p.55). g, is real if and only if Pr"+J = T<i"HJT 'E H, ie,
= rGq:;r-* <; Il. The latter inclusion holds if and only if the double
1/rG,J,J comists of only one col>et mod H:

HrGw, = (HrGri.ir -1 )r =Hr.

We thus obtain the real places among the g, by letting r run through a
system of representatives of the cosets 1/r of 1/\G such that Ttpg:;r-' EH.
But, for .">uch a :-.ygem. one hali

X*(tp,p) = Lx(rtpd-ir-Y) = Lx(Prill).
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Putting Q = r\l], makes q = DIK' run lhrough Ihe real places of K' above p,
ie,
%@ @ |1 x(@od.
o
On the other hand we have
X1 @ 2xol+ | x(td.

qrectl

Legendre's duplication formula LIR(s)Li(.1 +1)= Lc(s) (see (4.3)) tume
this into

Cp(LIK,X»-") €

N cexoN e o (s piidies=
qrmpln qred! are. !

€ nc,(LIK .x,.,). n
ALLL

We finally put
CeLIKx,.,) e Nc(Kx..J
px

and ohtain immediately from the above proposition the equations
L"-(LIK,x + x',8) = L-x,(LjK,X. € )Lx..,(LIK,X",S),
L"~(L[K.X,.,) = L,.;,(L'1K,X.S),
Cx(LIK. X...,L@Cx(LIK', X..,).

(12.2) Definition. The completed Artin L-series for the ch,1rncter x of
G(LIK) is defined 10 be

A(LIK.X ..,) € ,(LIK.X)'12C@(L[K.x.,)C(LIK,X .,).

where
(LIK, 30 = e POMLIKL 0) |

The behaviour of the factors c(L IK, x), Lex.JLIK, X,s), L(L IK, x, s) on
the righl-hand side. which we studied in (10.4), (11.11), and above, carries
over to the function A(LIK, x.s), i.e.. we have the
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(12.3) Proposition. (i) A(LIK X + x.,s) = A(LIK,x,s)A(LIK,X,S).

(i) /fL'IK is a Galois subextension of LIK and X a cliaracter of G(L'IK ),
then

ALIK 3. 5) = ALK, x.05).
(iii) Jf K' is an intermediate field of LI K and x .1character of G(L IK’),
then

ALIK  xa8) = A(LIK', x.8)

For a character X of degree |, the completed Artin L-series A(L iK. X,s)
coincides with a completed Hecke L-series. To see this, lel Lx 1K be the
fixed field of the kernel of X,and let f = TTP p"s be the conductor of Lx IK.
By (1 1.10), we then have

f@ fixd.

Via the Arlin symbol

1;pl--—-+G(LxIK),  af - U XOK),

X become-. a Dirichlet character of conductor f, i.e., by (6.9), a primitive

GriH]encharakter mod with exponent p = Qo that Pr=0ifr i5
complex. This G, ij/fe,ch, mlita will be denoted

We put Pp = Pr if p is the place corresponding to the embedding
r:K - The numbers Pp have the following Galois-theoretical meaning.
(12.4) Lemma. For every real place p of K one /Ja.€

Po=ILyp Kyl — 1.
Proof: We con<,ider the isomorphism
1K = 41/Pi]

where fl= TIP Ut"l is the congruence rnbgroup mod f of the idele group
I= DPKO(see chap. VI, (1.9)), and consider the composite map

RS — JPT— G(L, 1K) < o

Ut p be a real place of K, and let a E / be the idele with components
ap = - 1 and ag = | for all places q different from p. By chap. VI, (5.6),
the image /f<p = (a, L1 IK) = (-1, Lx*,plKp) in G(L-., IK) i:-. a generator of
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the decomposition group Gp= G(LxidKp)- By Lhe approximation theorem,
we may choose an a EK* rnch thata= | mod f, a< 0in Kp, anda> 0
in Kgq, for all real places q -1- p. Then

fi = rm E 30)= {XE" - PE ui"p) for PIfxi). iff= np pwr

Ai, explained in the proof of chap. VI, (1.9), the image of a mod NK* in
Jljp! is the clas€ of (1J) = (a), which therefore maps to 'P*-J.I- Consequently,

x((@)) = x1(a)x-x,(a) = x(t/-h.p).
Since a= | mod f, we have xr(a) = I and x.._,A = N((@}") =
(19_'E)E = (-1)1'1>, ie., x(<p<ip) = (-1)"P, sothat 'P-J.I = | for Jp =0,
and (ti<p -f. | for /Jp = 1. But this b the i tatement of the lemma. D

(12.5) Proposition. The completed Artin 1.-scrie.\ for the characier x of
degree 1 and the completed Hecke L-series for the Grij_/iewharakre, X
coincide:

A(LIK,X,,<J € A(X,..),

Proof: The completed Hecke L-series is given, according to §8, by

Ax,..) & (dKIOLE)) T2Lo%6(x, )L (x..)

with
L,)X,s) = Lx(s).

L) = Lp(s
X(s) ‘% p(SP)

is the L-function of the G(Clil{)-i,ct X = Hom(K,C) defined in §4. The
factors Lp(sp) are given explicitly by

ands= sl + p, where

Lc(s), if p complex,
*) Lp(sp) =[ L'+ pp), ifp real,
(iee p.454).On lhe other hand we have
ALK, X,,,) € c(LIK, x)'12C@(LIK, X, )C(LIK, X, <)
with
C(LIK. x) = ldg IR(HLIK . 0)]

and
C,%(LIK,x,<1€ N c(LIKx,J,
Pl§
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Let Lx be the fixed field of the kernel of x. By (I I.11). (ii), and the remark
preceding lemma (12.4). one has

L(LIK, x) € c(L,IK, xI € IdK I'll(f(x))"
and by (10.4), (ii), and (10.6), and the subse4uent remark, one ha€
L(LIK, X..<J € C(L,IK, X,,,) @ LC/..n.
We arc thu€p reduced to proving
L'p(LIK'X. €) = Lu(Sp)
for Ploo ands= .11+ p. Firstly. we have L'p(LIK, x,s) = L".11(Lx IK. x,s)
(€pcc p. 537). Let <P<p he the generator of G(Lx,:plKyq). Since X is injective

on G(Lx IK), we get X(<P,v) = -1 if <Pl i- I. and x(rp,:;p) = 1 if <PP = 1.
Using (12.4) this gives

Le(@). for p complex,
L', (Lx1K,x,s)= | LIR(,1), forprealandl.'preal,i.e.,p;1=0,

Lk(s+1). for p real andl.'p complex. ie. flp = I .
Hence (*) shows that indeed L'.11(L IK, x. ) = Lp(Sp)- (W)

In view of the two results (12.3) and (12.5), the functional equation for Allin
L-series now follow€ from Brauer\ theorem (10.3) in a purely formal fa€hion,
a€ a com,cqucncc of the functional equation for Hecke L-€eries, which we
have already established.

(12.6) Theorem. Tile Artin L-series A(LIK,x,1) admit,; a meromorp/Jic
colltil1u:ltioll to C ,md @alis/ie€ /he functional equation

ALIK . x,5) = WOALIK, 7,1 —s]

with a comtant W(x) ofab.mlute value 1.

Proof: By Brauer-s theorem. the character xi€ an integral linemcumbinalion
Xx=Ln,xn,
where the X,* arc induced from characters xi of degree | on subgroup€
H, = GU,IK,). From propositions (12.3) and (12.5), it follow€ that
ALIK.x. 1N ALK x,,. )"
=TT ALK g™
i

=1 A "
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where 7, isthe Crfdlem hara/.:ter of K, as!-.ociated to X,. By (8.6), the Hecke
L-series A(;(x. 1 admit meromorphic continuationl-, to C and 1-atisfy the
functional equation

AGrs) = WEDAG 1 - 9]

Therefore _\(L IK, X,s) satistie!-. the functional equation
ALIK, x.,) @ W) TT ACx,.1-,) € W)ALIK. X, 1 - .)).
where W(x) = 1N, w(x1) i** of absolute value J.
The functional e4uation for the Artin L-series may be given the following
explicit form, which il-, easily deduced from (12.6) and (4.3):
CLIK. x, 1 —s) = A(x,)L(L|K, X.5).

with the factor

Alx ..) € WIIdKI™TIFLIK.x3] !
x (COSIrL/2)"+(sin;rs/2)™  neayyy

and the exponents

L0 | n 1
= —5( — y = -3 =
n 2x()+§p Fxlew). n o= sx) ;2)((«:\1:).

Here the summations arc over the real place5 p of K. This gives immediately
the zeroe€p of the function L(LIK ,x,s) in the half-plane Re(.1) -S 0. If xil-.
not the principal character, they arc the following:

ats = 0. - 2. -4 . .t:eroes of order @x(1) + L
precil

ats =-1, - 3, -5, .. zeroe!-. of order @x(l) - L
- Pl

Remark: For the proof of the functional equation of the completed Arlin
L-serie5, we have made essential use of 1lhe fact that "Euler factors"
Lp(L I K, X,s) at the infinite place€ p, which are made up out of gamma
function€p. behave under change of fields and character€p in exactly the ..,ame
way as the Euler factors

S (LIK. X.5) = det(1 — ppeP) 3 v~
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at the finite places. This uniform behaviour i€ in striking contrast to the
great difference in the procedures that lead to the definition€ of the Euler
factors for and p 1 o0o. It is in thi€p context that the mathematician
C11rmTOPHUL recently made a very interesting discovery (see 126],
[27]). He ‘ihows that the Euler factors for all places p can all be written in
the same way:

log N(p)

2mi

-1
C,(L|K,X.v):detx< (sid—6y); H(XP/L‘.)) .

Here 1/(xp/K..p) is an infinite dimensional C-vector space which can he
canonically constructed, (*;)p is a cenain linear "Frobenius" operator on it,
and det-,., i€ a "regulariwd determinant” which generali7es the ordinary
notion of determinant for finite dimen€pional vector :;paces to the infinite
dimensional case. The theory based on this observation i€ of the utmo@t
generality. and reaches far beyond Artin L-series. It sugge€ts a complete
analogy for the theory of L-series of algebraic varieties over finite fields.
The striking succes'i which the geometric interpretation and treatment of the
L-@eric€ ha5 enjoyed in this analogom €ituation adds to the relevance of
pe1rr\-GER\ theory for present-day re'iearch.

§13. Density Theorems

Dirichlet's prime number theorem (5.14) say€ that in every arithmeti
pn,gression
a. axm. ax2m, a+3m,.

u.m EN. (a,m) = 1, there occur infinitely many prime numbers. Using

L-€cric:;., we will now deduce a far-reaching gcneralintion and sharpening
of this theorem.

(13.1) Definition. Lei M be < scl of prime ideals of K. The limit
I: 91w

dm) = lim .
a0 L9L(p)--
u

provided it exi&b, is called the Dirichlet density of M.
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From the product expansion

wo~Q am..  Re1,

we obtain as in §8. p.494,

log(K(T™ I_€ R S R 1.
pmm>J1(pyn' p SIL(P) pmc2 mL(p)HiL
The lauer sum obviously defines an analytic function at s = 1. We write
f(s) ~ R(S) if f(s) - f2(s) isan analytic function ats = I. Then we have

log(K(.)—t-1—— L _a1_,
p R seom=l NHP)S

because the sum Lig,:(pi:c- »J1(p)-* taken over all p of degree:::_ 2 is analytic
at€ = 1. Furthermore, by (5.11). (ii), we have (K (s) ~ 0 and so

L 1~ log_|
p >J1(p) EO|

So we may abo write the Dirichlet density as

d(M=) lim  Lp"M >J1(0)s
1+0 log2-T

Since the sum L >J1(p) -' over all prime ideals of degree > 1 converges, the
definition of Dirichlet density only depend!> on the prime ideals of degree |
in M. Adding or omitting finitely many prime ideals also does not change
anything as far as existence or value of the Dirichlet density is concerned.
One frequently abo considers the natural density

b(My@ lim L EM 1<) 'S )

o #{p | <A(pd -S xi

It is not difficult to show that the existence of S(M) implies the existence
of d(M), and that one has 8(M) = d(M). The convcr€pe is not always true (see
[123], p. 26). In the notation of chap. VI, SI and p, we prove the
gcnerali7ed Dirichlet density theorem.

(U.2) Theorem. Lclm be a module of K and Hm an ideal group such th;.it
Jm 2 Hm 2 pm with index hm = (.P'; Hm)_
For every cfa.,8 Jt E Jm/ H™ the .@et P(.R) of prime ideals in.R h:1.¢ dcmity

l
d(PQN) € i3
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For the proof we need the following

(13.3) Lemma. Let X be a nontrivial (irredU1.:iblc) character of J*** pm (i.e.,
a character of degree /). Then the Hecke L-scrics

|
Lo Q1 x@orp
(x (p) = O for plm) s<lligfics

Proof: By (8.5) and the remark following (5.10) (in the cage m = 1), L(x,9)
doe-; not have a pole al s = I. Let LIK be the ray clas<s field mod m.

10 G(LIK) €I*/PL Interpreting x as a character of the Galois group
G(LIK), the function L(x,s) agree.l, with the Artin L-series L([,IK,x,s)
up to finitely many Euler factors - <€ee (10.6). Like L(x,s), this Artin
L-serie€ doe€ not have a pole at ., = 1. So all we have to show is thal
L(LIK, X, 1) -1- 0. According to (10.5), we have

weh=(x) N Lukx.1vaa_
a

where X rum through the nontrivial irreducible character.. of G(LIK).

By (5.11), both (k(s) and (L(s) have .limple poles at s = 1, ie, the
product i.1, nonzero at s = I, Since none of the factors hal, a pole, we
tinuL(LI1K,x.1)#0. N}

Proof of (13.2): Exactly as for the Dedekind Leta function above, we obtain
for the Dirichlet /.-series

IogL(x..,)“l:@o (&)Y _

p 91(py pes JUPY
Multiplying this by x(-@-) and wmming over all (irreducible) X yields

log(KC.'1+ |: x@I-)logL(x..,) ~ b] I -
X7"1 ol Ni(p)

Since L(x, 1) -1- 0, logL(x--1) is analytic at s =1.But
L x@rorye o ifr#-
1 hm, if.it' =fl.
Hence \\--e get

log _1_—~ log(K(s) ~ hm L @_
s-1 pec@J1(p)'

and the theorem i.1, proved. [m]
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The theorem show€p in particular that the density of the prime ideals
in a class of ;m;H™ is the same for every cla,;,s, i.e., the prime ideals
are equidistributed among the classes. In the ca’e K = Q, m = (m),
and H™ = P™, we have J™'/P™ € (Z/mZt (sec chap. VI, (1.10)),
and we recover the classical Dirichlet prime number theorem recalled at
the beginning, in the stronger form which say€ that the prime number€
in an arithmetic.: ie, in aclass a mod m, (a,m) = |. have
density pou =

Relating the prime ideals p of a cla€ps of J"/pm, via the cla),.., field
theory isomorphbm pn;pm € G(LjK), to the Frobenius automorphisms
0), gives u€ a Galois-theoretic interpretation of the Dirichlet
density theorem. We now deduce a more general den€ity theorem which
i€ particularly important in that it concerns arbitrary Galoi€ exten:-ions (not
nece@sarily abelian). Forevery a £ G(LI K). let us consider the set

of all unramified prime ideals p of K such that there exists a prime ideal $Ip

of L @atisfying LK
- ()

where (':if) i€ the Frobcniu€y auto?lorphism <p,:p of 11] over K. It is clear
that this €ct depends only on the con.lugacy clas:-

)@ {wt_, Ir e cLIky)

ofa and that one ha), P,1K(a)nPL1K(r) = 0 if (0) #- (r). What is the
den'>ity of the set PL1K(a)'? The amwcr to thi), que€ption i€ given by the
Cebotarev density theorem.

(13.4) Theorem. Let LI K be a Giilois ex.tension with group G. Then for
evelya EG, the ..et PLIK (a) ha¢a demity, and it is given by

d(P1.1K(0)) = .

Proof: We fir:-t assume that G ». generated by a. Let m be the conductor of
LjK. Then /.IK is tile class field of an ideal group H™. Im 2 Hm 2 P™.
Let€ E .I"'/1/m he the class corresponding to the element o under the
isomorphism
TUHY s G pe—s (ﬂ)
P
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Then PL1K(u) consists precisely of the prime ideals p which lie in the
class .it. By the Dirichlet dem,ity theorem (13.2), we conclude that P1.w(a)
has density

! #(@)

|
d(PL1drr)) PR s
In the general case, let E he the fixgd field of a. If .f is the order of a,
then, as we just saw, d(P11r(a)) = 1=Let P(a) be the set of prime ideals
13 of L weh that 131P e Pt K(a) and (@) =a.Then P(a) corresponds
bijectively to the set P{lr(a) of thO'-C prime ideals q in PLir(a) €uch
that Eg = Kp, qlp. Since the remaining prime ideals in PL1r(rr) are either
ramified or have degree > | over Q, we may omit them and obtain

d(PL 1r(a)) = d(PL1ra) = Y' -
Now we consider the surjective map
P: P;.IL(a)-----;, PL1K(a). gi---+ qn K
As P{jr(a) € P(u), we get, for every p E P1.1K(a),

p-e) "' e ey anpy rzrya).
where Z(a) = {r E GI ra = ar) is the ccntra[i7er of a. So we get
| ) i1 #a)
d(PL Kia)) @ ZUn' @ d(P, 1c:(a)) € #z@ | @#G. T

The Cebotarev density theorem has quite a number of surprising
consequence€y, which we will now deduce, If S and T are ,my two “cts
of primes, then let us write

ST
to indicate that S is contained in T up to tinitely many exceptional elements.
Furthermore, letuswrite S=T if Sr;;_ I and Tr:;_S,

Let LI K be a finite extension of algebraic number fields. We denote by
P(LIK) the set of all unramified prime ideals p of K which admit in La
prime divisor 13 of degree | over K. So. if LIK i5 Galois, then P(LIK) i»
just the @et of all prime ideals of K which 5plit completely in L.

(13.5) Lemma. Let NIK be a Galois extension conwining L. ;.md let
G = G(NIK), H = G(NIL). Then one has

P(LIK)= PN1K(a) (di8jointunion).





€ 13. Density Theorems 547

Proof: A prime ideal p of K which is unramitied in N lic5 in P(LIK) if

and only if the conjugacy clas€ (a) of a = (N_Q& for some prime ideal
‘IJIP of N, contains an element of H, i.e. if and only if p E Ptv1K(a) for
some a E G such that (@) N H #- 0. [m]

(13.6) Corollary. If LIK i€,m extemion of degree 11, then 1he .\et P(L IK)
h,1s den. @ity d(P(L IK Y4. Furthermore, one h 1s

dPLIK) = 4 (=) LIK is Galois.
n

Proof: Let NIK be a Galois extension containing L, and letG = G(NIK)
and /1= G(NIL). By (U.5), we have
P(LIK)~ LJ P,K@).
(@M=,
The Cebotarev density theorem (13.4) then yield€@
#(o) 1

~ =_—# 5
AP #G #G o gm

).

Since flE  U'rr),7n.a-1(0-), it follow<.; that
#H

dPIK) = #G ~ ;-
LIK h Galois if and only if H is a normal subgroup of G, and this is the

case ifand only if () £ H whenever (rT) N Il #- 0, and so this holds if and
only if H = U(r)GH#M{a). Thi€ implie,;, the second claim. D

(13,7) Corollary. If a/mo.\t all prime ideals split completely in the finite
extension LIK, thenL =K.

Proof: Let NIK he the normal clornrc of LIK, i.e.. the smallest Galoi€
exten<.;ion containing /.. A prime ideal p of K split€ completely in L if and only
if it splits completely in NIK (sec chap. . *9, exercise 4). Under the hypothc€is
of the corollary, we therefore have

|
| ~d(P(LIK)) ~ d(PINIK)) =LN, K(

sothat [N: K] =land N = L= K. C
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(13.8) Corollary. An exten.,;ion L IK is Galois if and only if every prime
ideal in P (LI K) split.,; completely in L.

Proof: Let again NIK he the normal closure of LIK. Then P(NIK)
consists preci,;cly of those prime ideals which t-.plit completely in L. Hence
if P(NIK) € P(LIK), then by (13.6),

| I
INCKI ©d(P(NIK)@d(P(LIKI)e>_ Lokl
i.e, [N: KL::IL: K], soL =N is Galois. The convecr,;;e is trivial. D
(13.9) Proposition (M.BA/Jf.H). If LIK is Galoi,; and MIK is an arbitrary
finite extension. 1hen
P(LIK)2P(M[K) <==> Lr;;M,

Proof: L <; M lIrivially implies that P(MIK) C; P(LIK). So at-wme

convert-.ely that P(LIK)2P(MIK). Let NIK be a Galois extension
containing Land M, and let G = G(NIK), H = G(NIL), If= C(NIM).
Then we have

P(MIK) @ PVIK(@) < PLIK)= LJ  Plis1dm).
-r),Mirvi
Let a E // Since P.viK(a) i,; infinite by (13.4), there mwt exist some
p E PyviK(a) such that p E PNIK(r) for a '>uitahle r E G wch that
() n fi 1- 0. But then r i, conjugate to r, and since / i a normal
subgroup of G, we find {rr) =\r) C; Il. We therefore have ' <; H, and
henceL<;M. D

(13.10) Corollary. A G;.Jlois extension |IK is uniquely determined by rhc
:set P(L IK) of prime idea/,; which ,;plit completely in ii.

Thi,; beautiful result is the beginning of an answer to the programme
formulated by It.OPow KHOMCKf:.H (1821-1891), of characterizing the
extensions of K, with all their algebraic and arithmetic properties, solely
in term™ of sets of prime ideab, "in a similar way as Cauchy"s theorem
determines a.function hy its houndarv rn/ue€" The re...ult raises the quct-.tion
of how to characterize the sets P (I, 1K) of prime ideals solely in tcnw, of
the ba€yc Held K. For abelian extensions, c\ast-. Held theory gives, a concise
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an<,wer lo !hit-., in that it recognize€y P (LI K) as the set of prime ideals lying
in the ideal group H™ for any module of definition m (see chap. VI. (7.3)).
If for instance LIK is the Hilbert class Held. then P(LIK) consists precisely
of the prime ideals which are principal ideals. If on the other hand K = Q
and L = QI(L111), then P(L IK) comist" of all prime numbers p == 1 mod m.

In the case of nonabelian extension€p LI K, a characterization of the €eb
P(LIK) is e%cntialty not known. However. this problem is part of a much
more general and far-reaching programme known as "Langlands philo€ophf",
which it-. undergoing a rapid development at the moment. For an introduction
to this circle of ideas, we refer the interested reader to [ 106].
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